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Transfer Learning Improves Supervised Image
Segmentation Across Imaging Protocols

Annegreet van Opbroek, M. Arfan lkram, Meike W. Vernooij, iégen de Bruijne

Abstract—The variation between images obtained with differ-
ent scanners or different imaging protocols presents a majo
challenge in automatic segmentation of biomedical image&his
variation especially hampers the application of otherwisesuccess-
ful supervised-learning techniques which, in order to perbrm
well, often require a large amount of labeled training data hat
is exactly representative of the target data.

We therefore propose to use transfer learning for image
segmentation. Transfer-learning techniques can cope withdif-
ferences in distributions between training and target data and
therefore may improve performance over supervised learnig for
segmentation across scanners and scan protocols. We prestur
transfer classifiers that can train a classification scheme ith
only a small amount of representative training data, in addition
to a larger amount of other training data with slightly diffe rent
characteristics. The performance of the four transfer clasifiers
was compared to that of standard supervised classificationro
two MRI brain-segmentation tasks with multi-site data: white
matter, gray matter, and CSF segmentation; and white-matte
IMS-lesion segmentation.

The experiments showed that when there is only a small
amount of representative training data available, transfe learn-
ing can greatly outperform common supervised-learning ap-
proaches, minimizing classification errors by up to 60%.

I. INTRODUCTION

Examples of successful voxelwise-classification methods
can, among many other applications, be found in braingissu
segmentation, lesion segmentation, cartilage segmentatnd
plaque segmentation. Anbeek et al. [1] performed brain-
tissue segmentation by a KNN classifier with intensity and
spatial features. The same classification framework was als
used for segmentation of white-matter lesions [2]. Geremia
et al. [14] performed MS-lesion segmentation with a spatial
decision forest classifier on local and context featureseHe
local features consisted of voxel intensities, while crhte
features consisted of mean intensities of a three-dimaakio
box around the voxel. Folkesson et al. [12] performed knee-
cartilage segmentation with a kNN classifier with intensity
and spatial features, as well as intensity after convalutio
with a Gaussian, and first-, second-, and third-order dviva
features. Liu et al. [18] performed plaque-component segme
tation by first performing a voxelwise classification with a
Parzen classifier on features like intensity and distandbeo
lumen. Next, the region boundaries were determined with an
active-contour model in order to eliminate isolated voxels

In order for supervised-learning algorithms to performlwel
the used training data needs to be representative of thettarg
data. However, in medical image segmentation a sufficient
amount of exactly representative manually labeled trainin

~ Segmentation of biomedical images plays a crucial rolgata is often not available because of between-patient vari
in many medical imaging applications, forming an importandyjjity or because images are acquired with different seesin

step in enabling quantification in medical research andaain

and/or different scan protocaols.

pl’aCtice. Since. manual Se.gmentation is Very t|me ConsumingNe propose to perform Segmentation through a different
and prone to intra- and inter-observer variations, a Vari&§pe of machine learning, calletlansfer learning Transfer-
of techniques have been developed to perform segmentati@syning algorithms exploit similarities between diffetelas-

automatically.

sification problems or datasets to facilitate the consimact

Many successful approaches to automatic segmentation rgfya new classification model. They possess the ability of

on voxelwise classification by supervised-learning teghes.
In supervised learning (manually) labeled training data

supervised-learning algorithms to capture class-spéaifigvl-
&dge in the training phase without requiring exactly repnes

used to train a classification scheme for the target datat, Filfative training data. Except for a pre”minary study preedn

features are extracted from the training and target dater afin [35], to the best of our knowledge transfer learning hats no
which a classifier is trained. This classifier can then be tsedyet been applied to medical image segmentation.

segment the target data into the different tissue classs®d  The purpose of our study was to investigate whether

on the extracted features.
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transfer-learning techniques can improve upon regulaersup
vised segmentation of images obtained with different scan
protocols. We compare the performance of four transfestlas
fiers with that of standard supervised-learning classifiats
four transfer classifiers use training data from sourcegroth
than the target source, which was acquired with differeahsc
protocols and at different scanners, as well as a small atnoun
of representative training data from the target source isegju
with the same protocol as the target data. We performed
experiments on voxelwise MRI brain-tissue segmentatiah an



white-matter-lesion segmentation. same-distribution samples while reducing the weights &-mi
This paper is organized as follows: first some backgroumthssified different-distribution samples. Removing esling
information on transfer learning is given in Section Il. Sedifferent-distribution samples is considered a common ap-
tion Il describes the four transfer classifiers we used.- Sggroach in transfer learning [17]. The fourth transfer dféess
tion IV describes the experiments. Section V-A presents tpeesented in this paper, Adaptive SVM [42], is not based on
performance of the four classifiers on brain-tissue segmensample weighting. The Adaptive SVM trains an SVM on the
tion, and Section V-B on MS-lesion and white-matter-lesiosame-distribution samples only, with the restriction thzs
segmentation. The conclusion and discussion are givenr@sulting classifier should be close to an SVM on the differen
Section VI. distribution samples. The next section will discuss ther fou
transfer classifiers in detail.

Il. BACKGROUND

) ) ) ) IIl. METHODS
Transfer learning is a relatively new form of machine

learning that allows for differences between training aarget -6t i € R" denote a training samplewhich is a vector
domains, tasks, and distributions. This means that trgiaird  cONtaining a value for each of the features. We assume
test data may follow different distributionB(z), may have t© have a total ofN; same-distribution training samples;
different labeling functions?(y|z), may have different fea- (0 = 1,2,...,Ns) with their corresponding labelg;. The
tures, and may even consist of different classes. In thefiean total of all sa]r\pe—dlstnbgtpn training samples is denobgd
learning literature data that follows the same distributioas s = {%:4;};=1- In @ similar way, the d;ﬁe;erzl\}—dmtnbutlon
the same labeling function, and the same features is offs@ning samples are denoted Hy, = {7, y;'};, so that
referred to as data that comes from the samerce The goal there is a total training seft = TS;JTd of size N = N, + Ng.

of transfer learning is to learn a classification algorithon f FOT the moment we assumg, y;” € {1, -1} vi, but all the

the target data, that benefits from already available data tRr€Sented algorithms can easily be adapted to more than two
originates from different sources, i.e. data that is someh&!2SS€s by one-vs-one or one-vs-all classification. -
similar, but not necessarily exactly representative foe th We compared the performance of four transfer classifiers

target data. This approach is opposed to that of traditionith the performance of the traditional SVM classifier. The

supervised-learning algorithms, which assume that mginitraditional, soft:margin SVM by Cortes and Vapnik [6] con-

and target data come from the same source. structs a linear decision functiofix) = v - © + vy, \{vhgrev

Pan and Yang [22] provide an overview of the transfef'Jlnd vo are moggl pgrameters that hqvg to. be optlmlzed from
learning literature, where they distinguish between tlypes the data by minimizing the SVM optimization criterion:
of transfer learning: inductive transfer learning, tramnsile

transfer learning, and unsupervised transfer learninghis R TR N

paper we are dealing with inductive transfer learning, her min o lvf|” + CY & 1)
the training and target data may have different labeling i=1

functions P(y|z), as well as different features and/or prior st yi(v @ +vo) > 1§
distributionsP (). We assume that a small number of labeled & >0

training samples from the target source is available, the so Va, .

called same-distribution training dataand aim to transfer

knowledge from a much larger amount of labeled training daka this optimization the term|v||? maximizes the margin
that is available from sources other than the target daea, #round the decision function, ard Y~ | ¢ minimizes the
so-calleddifferent-distribution training datalnductive transfer number of samples that are either misclassified or lie within
learning assumes that even though labeling functions vahe margin.C is the SVM parameter to trade off between
between training and target sources, they are still somewhaaximizing the margin and minimiziny_, &;, where a sample
similar, in such a way that different-distribution sourggge x; receives a valug; > 1 if it is misclassified, a value
some extra information in areas of the feature space whére< & < 1 if it is correctly classified but lies within the
same-distribution training data is scarce. margin, and a valug; = 0 otherwise.

We present four transfer classifiers that use this same- and’he original soft-margin SVM presented above can only
different-distribution training data, all based on sugp@ctor produce linear decision functions. By using kernel learn-
machine (SVM) classification. Three of the four classifieiag one can obtain a non-linear decision function [26]. In
use sample weighting. First of all, the Weighted SVM [41kernel SVM a map¢ is created that maps every sample
in which both same- and different-distribution trainingrea «; into a (possibly high-dimensional) feature spatfr;),
ples are used for training, the latter with a lower weighwhere an SVM decision functiorf(z) = v - ¢(x) + vo
than the former. Secondly, the Reweighted SVM, which wean be calculated. This results in a decision function that i
proposed in [35], which is an extension to the Weightelihear in the new feature spaegx), but depending on the
SVM where iteratively the weights of misclassified diffeten mapping¢ can be non-linear in the original feature space.
distribution training samples are reduced. And thirdlyAdr Explicitly calculating¢(a) however could be very expensive.
aBoost [7], which builds a boosting classifier for transfdruckily, the resulting decision functiofi(x) = v - ¢(x) + v
learning by iteratively increasing the weights of miscifisd can be calculated without explicitly calculating the featu



space¢(x), by use of a kernel matrix. This kernel matrix

K(x;,x;) = (¢(x:), ¢(z;)) gives the inner product between i w!

every combination of samples in the feature spage). The w; = { w?ﬁ%‘ft(mi)—yﬂ
decision functionf(x) = v - ¢(x) + vy can be calculated '

entirely by means of inner products of samplessic). This Here 8 = 1/(1 + /2InNy/Nj;). This value equals the
means that only the kernel matriX needs to be calculatedvalue used in the TrAdaBoost algorithm, and is derived from
in order to obtain a non-linear decision function, and th&daBoost [13]. The final classifier is the weighted SVM with

for x; € T,

for (x;,y:) € Ty ©

accompanying mapping need not be calculated. the weights from the last iteration.
We made a small adaptation to the algorithm presented
A. Weighted SVM in [35] to make it more robust. A disadvantage of reducing

I . . - the weights of thel; samples is that it can dis balance the
q ?sir::pr!et\)/velght;ngisan bsvlr;c;)l(;)po;atgdtm tr\'/eronglr}i:nsw\é:asses, since reduction of weights may happen more in one
efinition by assigning a weighv; = O every rainiNg ' 555 than in the other. This is undesirable because it will

_Sr?]r:p;elf]i ’OIZNQ;ICh épdr:;:stes Stﬂg :g]zoriﬁﬁeo:oigf nsmﬂfc'hange the priors of the classes, which will shift the cfassi
of traizing samp\;\éslj%f IrlllcUchpor:ting g;mple weightsuin thetowards the class with the lowest total weight. This problem
SVM objective function results in the following objectiveWas solved by in each iteratiannormalizing the weights of

. the different classes, so that
function [4]

i:y,;:l i:y,;:l ’i:yi:—l i:y,;:—l

N t+1 t t+1 t
1 = © and = . (7
m1n§H'U||2+CZ’LUl§1 (2) Z w; Z w; Z w; Z w; ( )
121 . . .
The constraints remain the same as in the traditional SVM The_ resulting -algorithm will be referred to as the
o .. Reweighted SVM (RSVM).
Now, one way to perform transfer learning is by training a
classifier onI" whereT;, samples receive a weight of one an
T4 samples receive a weight diy,, as is also done in the%' Transfer AdaBoost . o
transfer SVM classifier presented by Wu and Dietterich [41]. The third transfer classifier we studied is Transfer Ad-

This results in the following SVM objective function: aBoost [7] (TrAdaBoost), which is based on AdaBoost [13].
Like AdaBoost, TrAdaBoost is an iterative algorithm that re

min leHz + CRw Z &+ C Z & (3) duces and increases the weights of training samples aogprdi

v 2 i Ty i eT, to the outcome of a classifier. The final classifier is obtained

by a weighted majority vote of the resulting classifiers.
The TrAdaBoost algorithm is trained o' where each
Msamplea:i is given an initial weightw!, which in our ex-
periments was set with cross validation. In each iteration
t=1,2,..., N; the weightsw’ are normalized to sum up to
) one, and a weighted classifigf () is trained. The weights
B. Reweighted SVM for the next iteration are then determined by
The second transfer classifier we studied is a transfer SVM
we presented in a preliminary workshop paper [35]. This {

In our experimentRy, was determined with cross valida-
tion as described in Sect. IV-A.

We will refer to this method as the Weighted SV
(WSVM).

, (8)

t 33| f (@) =yl s
algorithm is an adaptation of the Weighted SVM that performs w!*! = wiﬁil‘ft(mi)_yil ;or (@i, 9:) € ;d
N, iterations in which the weights of misclassifi&d samples wi Bz or (zi,yi) € T
are decreased in order to reduce the influencéoéamples ., 8 =1/(1+ /20 Ns/Ny). Note that the weights of mis-

that contradict the rest of the data. This algorithm is a Wbrelassifiede samples are reduced b as in the Reweighted
between the WSVM and TrAdaBoost, which is described i@ypm whereas the weights of misclassifidd samples are

the next subsection. o , increased byj3, which is not the case in the Reweighted
The algorithm starts by giving each sampiga weight gy put is done in AdaBoost. AfteN,, iterations the final

. { Ry forz €Ty classification is determined by a weighted majority votehaf t

wi =4 4 for m; € T, (4) last[2t] classifiersf!(z):
where similar toRy, in the WSVM the optimal value foRg 1, V., 5;ft(f”> >1
was set with cross validation. Then a total &§; iterations f(z) = 1 otﬁ:e(rvﬁs]e ) )
are performed where for each iteration= 1,2, ..., N;; first ’
the weights are normalized to sum up g wherep; = =, with ¢, the error off*(z) on theT,; samples
. multiplied by the weight of eacli’s sample:
W =N © o) —
2 1\&Ti) — i
a= Yy 2 . (10)

a weighted SVM classifief*(x) is calculated froni” andw?, oaer, Y, wi '
and the weights for the next iteration are determined by ’ i:(as,yi ) €T,



This leads to a final classifigi(x) in which the intermediate V. EXPERIMENTS

classifiersft(m) that have a good performance on tifg We performed experiments on segmentation through vox-

samples are given a large weight. elwise classification on data from multiple sources acquire
with different MRI scanners. We evaluated two different
applications of voxelwise classification: segmentatiowbite

D. Adaptive SVM matter (WM) / gray matter (GM) / cerebrospinal fluid (CSF),

and white-matter-lesion (WML) and multiple-sclerosisides

The fourth transferclassifier is based on a different aFIpTOEYMSL) segmentation. In both cases we compared the perfor-
than the previous three. Instead of adding Tyesamples as mance of the four transfer classifiers to that of two regular

:Lalr;ng samlples, odne co:;r]l_(j allso t.:funta sepa:ra;e Claslem'e.rfsipervised-learning classifiers: a regular SVM trained bn a
eTy samples, and use this classifier to regularize a classi ?ining samples.T, and an SVM trained on the same-

trained on theT; samples. This idea is presented in tha. B L - ;

) y : istribution training sampled; only. Figure 1 schematically
Adapt|ve.SVl\/! [42] (A'S\./M)'. Flrst'aregula'r S'\/M.on tk@ shows the usage of the different training sources in the
samples is trained, resulting in a different-distributitesssifier different classifiers

f%(x). This classifier is then adapted to the target data by
training a “delta function”,Af(x), which adaptsf¢(z) to
obtain the final classifief (x):

fl) = fU=z)+Af(z) (11)
fi(x) + vx + vo. (12) \
Transfer SVMT SVMT
The parameters andv, of Af(x) are determined frorff, classifier :
by optimizing
Figure 1. Schematic figure of th&; data from sources 1 tdV, the T
data, and what training data is used in the different classifiThe Transfer
N classifier denotes any of the four transfer classifiers ptede
: 1 2 s
ming - |[ol|* +C ;g (13)
st yifd(as) +yi(vTe; +v9) >1— & A. Experimental Setup
&>0 Both in the WM/GM/CSF segmentations and the WML
Y (zi,y;) € T, and MSL segmentations we used data from multiple sources:
1y J S

four for WM/GM/CSF segmentation, and three for lesion seg-

Note that the first constraint differs from the definition bét mentatlon. We performed cross-validation experimentsrashe

original SVM in (1). This constraint favors an answer wherlﬁ?hturn one source was selected as same-distribution source
the total classifierf(z) correctly classifies thd, samples. Where same-distribution training data and test data was ob-

The regularization ternfv||2 in the objective function on the tained, while the data from the other sources was used as

other hand, favors an answer closet@(z) = 0, resulting in dlﬁerent—hdlstnbt{non tra;:nmg data. o I
a total classifierf (x) that is close to the different-distribution In each experiment the performance of the four transfer clas

classifier f%(z). The above optimization criterion therefore>!l1€'S was compared to the performance of the two supervised
results in a classifief () that is close tof%(z), but is also learning classifiers. A fixed number 6f samples was selected
adapted to improve classification on tiie samples from the images of the different-distribution sources, levihe

Contrary to the parametét in (1) the cost facto€*® in (13) number ofl; samples was varied, to study the influence of the

S -7 _amount of same distribution training data. All classifiesed
does not balance between optimization of the margin an .
s . : exactly the same test samples and where possible the’lBame
classification of the training samples. The role @f is to

o ; P and T} training samples.
Eg:?:;’la bs:\,ysiﬁ)r/]i: C,IEEZTSIfIi (;% ﬂlgist I?’vﬁlgfee ;Oﬁi(ﬁgra\?::ue All six classifiers were based on SVM classification with a
for O é]lives a Iarg%r wei;ht to ?h@' samples As?with the Gaussian kernel. For the regular SVM and the weighted SVMs

parameters in the other transfer classifiers, in our exparism in WSVM, RSVM and TrAdaBoost an |mplementat|qn n
O was set with cross validation. LIBSVM [4] was used. For A-SVM we used an adaptation to

- . . the LIBSVM algorithm by the authors of the A-SVM paper
Similar to the original SVM, A-SVM can also be used with For the RS\?M Iwe ch{)sé\f-t u: 20. which is enoughﬁto
kernels, by changing:; in (12) anq (13) top(z:). -~ achieve convergence. For TrAdaBoost we 8§t = 100,
An advantage of the A-SVM is that the classifier on thghich should be sufficient according to [7].
T, samples only has to be calculated once, which reduces theg; aach source, suitable values for the SVM param@ter

computational load of the classifier. The memory load of thg,q the kernel parameterwere determined with grid search
A-SVM is also lower than for the other classifiers, since all

samplesl’ need not be loaded in the memory at the same timehttp://iwww.cs.cmu.edu/ juny/AdaptSVM/



on Ty, where the best’ and~ were selected according to the 4) 20 T1-weighted images from the IBSR [40], 10 acquired
accuracy of a regular SVM. The sameand~ were used in with a 1.5T Siemens scanner, 10 acquired with a 1.5T
all classifiers. GE scanner, all with x 3.1 x 1 mm? voxel size

All four transfer classifiers have a transfer parameter thaf| four sources used different scanners and different sican
has to be tuned according to the data: for WSVM the ratjgarameters. Figure 3 shows a slice of an image from each of
Ry, for RSVM the ratio Rp, for TrAdaBoost the initial the four sources. The HASTE-Odd images were inverted prior
weightsw' of the T; samples, and for A-SVM the parametefg classification, because of their inverted tissue intéssi
C*. For each of the sources this was done on the availalgl@mpared to the T1-weighted images.
Ty samples. Note that in all experimeni$ consisted of 2y Features: To study the influence of the number of

data from multiple sources. Each of the different-distitn  featyres, we performed classification on two different et
sources was in turn selected as same-distribution souteew sets, The first feature set consisted of four features:

T, training data and test data was selected, while the other. The intensity

different-distribution source/sources were used to extfa . Thez, y, and > coordinate of the voxel, divided by the

samples. In each experiment the transfer parameter ojutigniz maxirﬁur,‘n width, length and height of tr’]e brain

the accuracy was recorded. The final parameters were obitaine ’ , '

by averaging over the optimal parameters obtained for each oThe second fe"?““re set consisted of .13 features — the

the different-distribution sources. four features mentioned above, together with nine scaeesp
All images were corrected for non-uniformity using théeatures:

N4 method [30], and basic image normalization was performeds The intensity after convolution with a Gaussian kernel

by a range-matching procedure that scaled the intensitigs s~ With o = 1,2, and3 mm?

that the voxels between the 4th and the 96th percentage in The gradient magnitude of the intensity after convolution

intensity within the brain mask were mapped between zero With a Gaussian kernel with = 1,2, and3 mn’

and one. In each of the sources the features were normalized The absolute value of the Laplacian of the intensity after

to zero mean and unit standard deviation. convolution with a Gaussian kernel with = 1,2, and
For both applications the performance is reported in l@gyni 3 mnv.
curves, showing the accuracy of the six classifiers as aifumct  3) Train and Test SetsFrom the same-distribution source
of the used number df; samples. in turn one image was selected, where between 3 (1 for
every class) and 200 samples were selected randomly,
B. Brain-Tissue Segmentation Experiments while the other images in the source were used as test

The segmentation of MRI brain images into the differerimages. For training a total of 1500, training samples per
tissues present (GM, WM, CSF) can give insight in thsource were selected randomly from all images of the three
presence, severity, and location of brain atrophy. This cdifferent-distribution sources. From each of the test iesg
provide useful information about neuro-degenerativeatiss 4 000 random samples were selected, on which the accuracy
such as dementia, as well as other brain disorders suchwa&s evaluated. Mean classification errors were obtained by
multiple sclerosis (MS) and schizophrenia. Many automatgerforming multiple experiments where every image in the
brain-tissue segmentation methods have been developed ®mirce was once selected as training image.
the past 20 years, which are used in medical research as we#t) Comparison with Existing MethodsTo compare the
as in the clinic. performance of our SVM classification framework with that
In our experiments we performed brain-tissue segmentatioh existing methods, complete image segmentations were
by three-class voxelwise classification within a manuadly sobtained and compared against manual segmentations and
lected brain mask. Within this brain mask every voxel wasegmentations obtained with SPM8 [3]. SPM8 is a state-of-
classified as either WM, GM, or CSF. the-art brain-tissue-segmentation tool. It performs anatic
1) Data Description:MR images with corresponding man-segmentation based on mixture of Gaussians with incorpora-
ual segmentations from the following four sources were useibn of tissue probability maps of the three tissues, that ar
1) 6 Tl-weighted images from the Rotterdam Scamon-linearly registered to the target image, and intensiy-
Study [16], acquired with a 1.5T GE scanner withuniformity estimation. The segmentation is determinechwit
0.49 x 0.49 x 0.80 mm? voxel size the expectation-maximization algorithm.

2) 12 half-Fourier acquisition single-shot turbo spin echo Evaluations were performed with the Dice coefficient [10]
(HASTE) images scanned with a HASTE-Odd protocain the WM, GM, and CSF. The Dice coefficient is defined as
(inversion time = 4400 ms, TR = 2800 ms, TE = 29

ms) from the Rotterdam Scan Study [16], acquired with Dice = 2—TP’ (14)
a 1.5T Siemens scanner with25 x 1 x 1 mm?® voxel 2TP+FP+FN
size. These HASTE-Odd images have image contraghere TP denotes the true positives, FP the false positives,

comparable to inverted T1 intensity. and FN the false negatives.

3) 18 T1-weighted images from the Internet Brain Seg- The performance on the data from Source 4 was compared
mentation Repository (IBSR) [40], acquired with aro that of several other automatic techniques as reported in
unknown scanner, with voxel sizes betwéesd x0.84x literature. For this, the Tanimoto coefficient (which isals
1.5 mm? and1 x 1 x 1.5 mn? known as the Jaccard index) was used:



Figure 6 shows slices of the three sequences for the three

TC = L (15) sources. As the PD images of Source 1 appear similar to the T2
TP+ FP+FN images of Sources 2 and 3, we decided to treat these mosgalitie
Note that TC< Dice. to be the same.

5) Influence of NormalizationWe also performed classifi-  2) Features: We performed experiments with a small and
cation with two different types of image normalization ider 4 large feature set, which were composed similarly to the
to study the added value of the transfer classifiers oveowari featyre sets for WM/GM/CSF segmentation discussed in Sec-
normalization techniques. In the experiments mentioned@b tjon |\-B2, with the difference that three MRI sequences
all images were normalized by a range-matching procedy{@re used instead of one, and the Gaussian kernels used
which maps the 4th and the 96th percentage of intensity Withyy the convolution had sizes = 0.5, 1, and 2 mm?. The
the brain mask to zero and one. We studied the influence ghajler kernel sizes account for the higher resolution ef th
two other normalization techniques. For the first method th‘ﬁﬁages compared to the images used in the WM/GM/CSF
minimum intensity within the brain mask is mapped to zergyperiments. This resulted in a feature set of 6 featuresaand
and the maximum to one. This method should be less robuskig of 33 features.
outliers in intensity than mapping the 4th and 96th perdenti ~3) Train and Test SetsSince lesion voxels appear bright on
For the second method we performed the tenth-perceniga|R scans, we first discarded all voxels with a low FLAIR
normalization procedure of Nyl et al. [21] within the 4thntensity. The threshold was set to 0.75 on the normalized
and 96th percentage .of intensity. This procedure first ElP.IO“FLAIR image, discarding most of the CSF and some GM
a range matching which maps the 4th and 96th percentile\igels. For the reported learning curves only voxels with a
zero and one, and next maps every tenth percentile with zgf| A|R intensity above this threshold were selected forrtiray
and one to the mean intensity over all (training and targethq testing.

Images. _ For Sources 1 and 2 train and test data was obtained by

.Normal|zat|on experiments were performed on 13 1‘eatur§a(§ndom|y selecting 1% of the lesion voxels in the image and
with the SVMT, SVM T, WSVM, RSVM, and A-SVM clas- then randomly selecting non-lesion voxels above the FLAIR

sifier. TrAdaBoost was omitted in these experiments becayg@eshold, so that a total of 5000 samples per image were

of its high computational load. selected. The images of Source 3 contain only few lesion
. ) voxels, since these subjects were less affected and theegnag
C. MSL and WML Segmentation Experiments were also more conservatively segmented. To still have a

MS is a chronic inflammatory disease that affects the whiteasonable number of lesion samples in Source 3 4% of all
matter in the brain, resulting in the formation of WMLslesion voxels was selected. This resulted in training astl te
Automatic methods to segment these lesions in MRI imagssts with a lesion percentage of 13% for Source 1, 15% for
enable the diagnosis and monitoring of the disease withhaut Source 2, and 10% for Source 3.
tedious task of performing manual segmentations. WMLs alsoOne to eight same-distribution training images different
occur in individuals who do not have MS. Typically, WMLfrom the test images were selected from the same-distoitouti
load increases with age, and a higher WML load is associateslrce, where from each image 200 same-distribution trgini
with cognitive decline [9], increased risk of stroke [36hda samples were randomly selected in the way mentioned above.
increased risk of dementia [24]. Automatic segmentation &fom the different-distribution sources 2 00p samples were
WNMLs therefore provides useful information in these reskar selected per source.
areas, as well as for the monitoring of patients. Mean classification errors were obtained by performing

In our experiments we performed WML and MSL segmultiple experiments for differing numbers &f, images,
mentation by voxelwise classification. First a brain maslk wavhere every image in the same-distribution source was once
determined with the brain-extraction tool [31], after whic used as first training image, once as second training image,
every voxel within the brain mask was classified as eithetcetera. The images from the same-distribution source tha
lesion (WML or MSL were treated the same) or non-lesiowere not used for training were used for testing, where the

tissue. accuracy was determined on test sets of 5000 samples per
1) Data Description: We used data with manual segmenimage.
tations from three different sources: 4) Experiments for MS Lesion Challengée also calcu-

1) 20 healthy elderly subjects from the Rotterdam Scdated complete segmentations on 30 test images of the MS
Study [16], scanned with three sequences: T1, PD, ahdsion challenge, and submitted these to the challengeneOf t
FLAIR, with 0.49 x 0.49 x 0.80 mm? voxel size 30 test images 17 were acquired at the Children’s Hospital of

2) 10 MS patients from the MS Lesion Challenge [32]Boston (CHB, Source 2), and 13 at the University of North
scanned at the Children’s Hospital of Boston with thre€arolina (UNC, Source 3). Segmentations were performed
sequences: T1, T2, and FLAIR, with5 x 0.5x0.5 mm? with RSVM on 33 features, which was the classifier that
voxel size overall performed best in the experiments with eight same-

3) 10 MS patients from the MS Lesion Challenge [32fdistribution images.
scanned at the University of North Carolina with three In order to obtain a competing segmentation framework,
sequences: T1, T2, and FLAIR, with5 x 0.5x0.5 mm® the classifier was trained on morE, samples than used
voxel size in the learning curves. To speed up the calculation, only



few T, samples were used. A total &0000 7, samples were added SVMT; outperformed the SVMI' classifier.
were selected from the ten same-distribution training iesagTransfer learning improved classification compared to éhes
and 4000 T,; samples were selected from the two differentwo supervised-learning techniques. For S\UMtlassification
distribution sources. errors were slightly lower for 13 features than for 4 feasure
The classification parameters were set in a slightly differewhich shows that the nine extra features hold additional
way than for the previous experiments. The SVM parameterdormation over the first four features. For the SVEL
C and~ were obtained with a grid-search experiment on thdassifier errors were lower for four features, because ef th
ten same-distribution images with a regular SVM. The pararodrse of dimensionality.
eter R was determined with a cross-validation experiment on Overall, the use of transfer learning improved classiftrati
the ten same-distribution images. In turn one same-digtob compared to the two supervised-learning techniques. Fig-
image was selected as test image, while the other nine sames 2(c) and 2(d) show the percentage reduction in classific
distribution images were used as training data, togeth#r wtion error of the different classifiers compared to the SYM
the T, samples. The value foRg with the highest accuracy classifier. These two figures include 95%-confidence interva
was selected. (Cls) of the mean improvement of TrAdaBoost and A-SVM.
The RSVM classifier was used to calculate a posteridp avoid cluttering the figure not all Cls are shown, but those
probability P(y = 1|x) per test voxel. The final segmentation®f SVM T', WSVM, and RSVM were similar to the CI of
were obtained by thresholding the posterior probabilitye T A-SVM. Overall A-SVM performed best, except for fewer
threshold was set differently for the two sources in théan 157, samples, where WSVM performed best. A-SVM
challenge data, in such a way that for the ten same-disimitout significantly outperformed SVM for the whole range of
training images the lesion volume in the manual and tlsamples, WSVM significantly outperformed SV, for up
automatic segmentation was equal. to 1507, samples for four features, and 7Q samples for
We noticed that lesions voxels in the middle of large lesiords3 features. RSVM performed slightly worse than WSVM for
often had lower intensities than the surrounding lesiorel@x both configurations, and only outperformed SV for less
which sometimes caused these voxels to be misclassifiedtlzan 507, samples on four features. TrAdaBoost performed
non-lesion voxels. This was solved by a post-processirg stgoorly for both feature sets, and showed much higher vagianc
where groups of non-lesion-voxels that in thandy direction than the other classifiers.
were surrounded by lesion voxels, were classified to beresio 2) Comparison with Existing MethoddVe compared full
voxels. image segmentations with existing brain-tissue-segrtienta
The performance of our classifier on the test images ofethods for the rightmost point in the learning curves (200
the MS Lesion Challenge was evaluated against two exp@it samples). Except for A-SVM on 13 features, the transfer
manual segmentations: segmentations from the expert wHassifiers did not give an improvement over SV at this
segmented the training data in Source 2, and segmentatipait of the feature curves, as can be seen from Fig. 2. The
from the expert who segmented the training data in Sourceg®al of these experiments was therefore not to investigate
The segmentations were evaluated on four error metrics: relhether the transfer classifiers improve over other teakesq
ative absolute volume difference (RAVD), average symroetrbut to investigate whether our SVl and transfer classifiers
surface distance (ASSD), true positive rate (TPR), ancefalsompare to available segmentation techniques.
positive rate (FPR) [32]. Table | compares the performance of the S\Mclassifier
5) Influence of NormalizationWe performed experimentsand three transfer classifiers: WSVM, RSVM, and A-SVM,
with two different types of normalization, similar to thepet- Wwith segmentations obtained with SPM8 [3]. For SVM
iments on GM/WM/CSF segmentation. In these experimerasd the three transfer classifiers four features were used.
images from the three modalities (T1, T2/PD, and FLAIRJrAdaBoost was not included because of its poor performance
were all normalized with 4-96th percentile range matchingnd high computational load, which was caused by the large
min-max range matching, and the tenth-percentile matchingmber of iterations. SVM';, WSVM, RSVM, and A-SVM
of Nyl et al. [21]. These experiments were performed on tivere all significantly better than SPM8, but not significantl
dataset with 33 features for the SV, SVM T,, WSVM, different from each other, based on a Friedman test with the

RSVM, and A-SVM classifier. significance threshold aP = 0.05. The table also includes
the Dice scores of the best classifier in the brain-tissue-
V. RESULTS segmentation accuracy study of De Boer et al. [8], who used

o ] the Source 1 data to evaluate several brain-tissue-segtient
A. Brain-Tissue Segmentation methods. In this study the best results were obtained with a

1) Comparison of ClassifiersFigures 2(a) and (b) give kNN classifier [37]. Our classifiers obtained similar scoves
the learning curves for all classifiers on 4 and 13 featur®M and GM as the kNN classifier. Our classifiers also greatly
respectively. These learning curves show the mean classiitperformed the kNN classifier on CSF, but the main reason
cation errors on all 56 target images as a function of tHer this is that we tested within the manually segmentedrbrai
number of same-distribution samplés which were obtained mask, whereas for the kNN classifier the brain was segmented
from a single image. For both feature sets the SVM on dlly atlas registration. This causes additional errors, @alhe
training sampled” outperformed the SVM on onl¥s when in the sulcal CSF.
the number ofl; samples was small. When madfg samples  Figure 3 shows examples of the resulting segmentations
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Figure 2. Learning curves showing the mean classificatioor end classification improvement on the test sets as aifumof the number ofl’s samples,
for the six classifiers: an SVM off", an SVM onTs, WSVM, RSVM, TrAdaBoost, and A-SVM. (a) and (b) show the age learning curves over all 56
images from the four sources, for 4 and 13 features respéctiic) and (d) show the percentage reduction in mean &lzetsn error compared to the SVM
T, classifier, averaged over all 56 images, for 4 and 13 feateg=ectively. For TrAdaBoost and A-SVM 95%-Cls for the m@aprovement were included,
the Cls of SVMT, WSVM, and RSVM were similar to the CI of A-SVM.

Table |
DICE COEFFICIENTS FORCSF, GM,AND WM FOR COMPLETE IMAGE SEGMENTATIONS WITH THE BEST SUPERVISEDEARNING CLASSIFIER(SVM T%),
WSVM, RSVM, AND A-SVM, AND SPM8. ALL DICES SCORES ARE GIVEN ON THE FOUR SOURCES WITH FOUR FEATHER. FOR EACH EXPERIMENT WE
USED 20075 SAMPLES FROM ONE SAMEDISTRIBUTION TRAINING IMAGE AND 4 5007; SAMPLES. THE KNN CLASSIFIER IS THE BEST CLASSIFIER
IN [8] ON THE DATA FROM SOURCE1.

Source 1 Source 2 Source 3 Source 4

Classifier || CSF | GM | WM CSF| GM | WM CSF| GM | wM CSF| GM | WM
SVM T 090 | 090 ] 092 [| 0.87 | 0.90 | 0.91 || 0.08 | 0.92 | 0.87 || 0.45| 0.86 | 0.78
WSVM 092 | 092 ] 093/ 0.83| 0.91| 094 || 047 | 092 | 0.88 || 0.40 | 0.86 | 0.78

RSVM 091 | 092 093 |[ 091 ]| 093 | 094 || 043 | 0.92 | 0.87 || 0.37 | 0.84 [ 0.77
A-SVM 089 | 090]| 092 (| 091 | 0.93 | 094 || 0.34 | 0.92 | 0.87 || 0.24 | 0.86 | 0.77
SPM8 081| 086 091 (| 0.85| 0.89 | 0.95 || 0.19 | 0.82 | 0.86 || 0.19 | 0.79 | 0.81

KNN 8] || 0.81 | 0.90 | 0.94 - - - - - - . . .

with the WSVM on the four sources. 96th percentile range matching. This indicates that moterex

We also compared our complete segmentations on Sourcéige normalization is not needed to normalize within sosyce
the IBSR data with 20 subjects, to various methods thand slightly hurts the performance of classification betwee
reported their performance on the same data. Table Il shosirces. The use of a transfer classifier improved classifica
mean Tanimoto coefficients for CSF, GM, WM, and the su®f the two supervised-learning classifiers regardlessetited
of GM and WM, and CSF, GM, and WM. The first six entriesiormalization technique.
are clustering methods, reported on the IBSR websitee
other nine methods were collected from literature. Not aB. MSL and WML Segmentation
methods reported overlap values for the CSF. The best sesultl) Comparison of ClassifiersWe performed a similar set
were obtained with a decision forest classifier [43], whicsw of cross-validation experiments for MSL and WML Segmenta_
trained and tested in cross validation on all remaining iesag tion. Figures 5(a) and (b) show the mean learning curveseof th
Our SVM T, classifier and the three tested transfer classifiegg classifiers on 6 and 33 features respectively. A verylami
WSVM, RSVM, and A-SVM, outperformed most of the othehattern can be seen as in the learning curves for GM/WM/CSF
methods as well as SPM8. segmentation: for a small amount @f data SVMT was the

3) Influence of NormalizationFigure 4 shows the learningbest supervised-learning classifier, whereas for Marelata
curves for the three types of normalization. Min-Max rang8VM T, performed better. The transfer classifiers WSVM and
matching, for which the results are shown in Figure 4(b) &8d RSVM improved over these two supervised-learning classifie
higher mean classification errors than 4-96th percentitgea up to a point where a relatively large number of same-
matching. Also, for min-max range matching the SVN] distribution training images was available. At this poitt\g
classifier performed worse than the SVMclassifier regard- 7,, WSVM and RSVM converged to the same error rate.
less of the number df; samples, indicating that the min-maxall classifiers performed better on 33 features than on 6.
normalization is not sufficient, even within the same sourcgigures 5(c) and (d) show the improvement over S\IM
Applying the more extensive normalization of NyUl et all]2 for SVM T, WSVM, RSVM, TrAdaBoost and A-SVM, for
for which the result is shown in Figure 4(c), did not give bett 6 and 33 features. The figures include Cls for some of the
overall results than when 4-96th percentile range matchigssifiers. The Cls of the other classifiers were similar to
was applied. The performance of the SVIM and the transfer that of WSVM. WSVM and RSVM overall performed best,
classifiers was similar for the two normalization techngjuesignificantly outperforming SVMI, for up to five T, images
but the SVMT classifier performed slightly better for the 4-(three for RSVM on 33 features). WSVM seems to perform

slightly worse than RSVM on 33 features, but this difference
2http://www.cma.mgh.harvard.edulibsr/ is not significant. Similar to the GM/WM/CSF experiments



(a) Source 1, image (b) Source 1, manual (c) Source 1, WSVM  (d) Source 2, image (e) Source 2, manual (f) Source 2, WSVM

(9) Source 3, image (h) Source 3, manual (i) Source 3, WSVM () Source 4, image (k) Source 4, manual (l) Source 4, WSVM

Figure 3. Segmentations with the WSVM classifier with foustéees. The classifier was trained on a total of 4 3Q0samples and 20@s samples from
one image from the target source, which corresponds to gte-most point of the learning curves in Figure 2(a). Thessification errors for the shown
slices were (c) 8.1%, (f) 9.2%, (i) 6.9%, (I) 15.2%.

Table Il
MEAN TANIMOTO COEFFICIENTS ONCSF, GM,AND WM FOR A VARIETY OF METHODS ON THEIBSR DATA WITH 20 SUBJECTS G+W DENOTES THE
AVERAGE SCORE ONGM AND WM, AND C+G+WDENOTES AVERAGE SCORE ONCSF, GM,AND WM. FOR THESVM T, WSVM, RSVM, AND
A-SVM CLASSIFIER200Ts SAMPLES WERE RANDOMLY SELECTED FROM ONE IMAGEFOR THE TRANSFER CLASSIFIERE 500 Ty SAMPLES WERE
ADDED. CLASSIFICATION WAS PERFORMED ON FOUR FEATURES

Classifier CSF GM WM G+W | C+G+W | Classifier CSF GM WM G+W | C+G+W
Adaptive MAP [25] 0.069 | 0.564 | 0.567 | 0.566 0.400 FC-PABIC [44] - 0.770 | 0.658 | 0.714 -
Biased MAP [25] 0.071 | 0.558 | 0.562 | 0.560 0.379 Modified FCM [29] - 0.750 | 0.724 | 0.737 -
Fuzzy c-means [25]|| 0.048 | 0.473 | 0.567 | 0.519 0.362 MPM-MAP [19 0.227 | 0.662 | 0.683 | 0.673 0.524
MAP [25] 0.071 | 0.550 | 0.554 [ 0.552 0.392 SV-GMM [23] - 0.768 | 0.734 | 0.751 -
ML [25] 0.062 | 0.535] 0.551 [ 0.543 0.383 TMCD [33] - 0.676 | 0.669 | 0.673 -
TS k-means [25] 0.049 | 0.477 ] 0.571 | 0.524 0.366 SPM8 0.107 | 0.650 | 0.684 | 0.667 0.480
AMS [20] - 0.683 | 0.691 | 0.687 - SVM T 0.309 | 0.757 | 0.645 | 0.701 0.570
BSE-BFC-PVC [28] - 0.595 | 0.664 | 0.630 - WSVM 0.266 | 0.754 | 0.648 | 0.701 0.556
C-GMM [15] - 0.680 | 0.660 | 0.670 - RSVM 0.240 | 0.730 | 0.633 | 0.682 0.534
Decision Forest [43][| 0.614 | 0.838 | 0.731 | 0.785 0.728 A-SVM 0.162 | 0.759 | 0.633 | 0.696 0.518

TrAdaBoost overall performed poorly, with a larger variancobtained a total score of 81.2174. Nine of the 27 methods had
than the other classifiers. A-SVM, which overall performed higher score on the 23 test images than our algorithm.
best on the WM/GM/CSF experiments, did not perform well 3) Influence of NormalizationFigure 7 shows the learn-
in the lesion-segmentation experiments. ing curves for the three types of normalization. Like for
Figure 6 shows resulting segmentations of the RSVM/M/GM/CSF segmentation, the Min-Max range matching,
classifier on 33 features with eight same-distribution igsag shown in Figure 4(b), led to higher mean classification arror
where the threshold on the posterior probabilities wascsete than 4-96th percentile range matching. The more extensive
so that the total lesion volume equaled that in the manuadrmalization of Nyl et al. [21], for which the result is
segmentation. shown in Figure 7(c), gave similar results as 4-96th peilgent
2) MS Lesion ChallengeTable Il shows the mean scoresange matching for SVM', WSVM, and RSVM, but not for
obtained on the 30 test images of the MS Lesion Challen§&M T, and A-SVM. For all three normalization technigues a
data. The scores were designed such that a score of 9GMSVM or RSVM classifier improved performance. Remark-
comparable to expert segmentations. Our method performadsly, the performance of the SVKI; classifier deteriorates
slightly better on the CHB data than on the UNC data, witvhen the normalization of Ny(l et al. [21] is used, compared
scores of 80 and 75 respectively. At the moment of writing thte 4-96th percentile range matching.
website of the MS Lesion Challentjéisted the performance
of 35 segmentation algorithms. With a total score of 77.9083 VI]. CONCLUSION AND DISCUSSION
our method ranked second on a total of eight methods that . )
segmented all 30 test images. The other 27 methods segmentef¢ Presented a transfer-learning approach to image seg-

only 23 test images (14 CHB, 9 UNC), on which our algorithrﬂqe”tation’ which enables supervised segmentation of image
acquired with different MRI scanners and/or imaging proto-

3http://Awww.ia.unc.edu/MSseg/resultable.php cols. The presented transfer classifiers benefit from trgini
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images, for WML segmentation with the six classifiers: SVMBnSVM on Ts, WSVM, RSVM, TrAdaBoost, and A-SVM. (a) and (b) show the mean
learning curves over all 40 images from the three source$ famd 33 features respectively. (c) and (d) show the pergemeduction in mean classification
error compared to SVM'; averaged over all 40 images, for 6 and 33 features resplgctMee shaded areas show 95%-Cls for the mean improvement. F
(a) and (b) the CI of SVMI" and RSVM were similar to the one of WSVM, and for (b) the Cl ofS¥M was similar to the one of WSVM.

Table Il
AVERAGE SCORES OBTAINED ON THE TWO DATASET$CHB = CHILDREN' SHOSPITAL OFBOSTON, UNC = UNIVERSITY OF NORTH CAROLINA) OF THE
MS LESIONCHALLENGE, FORRSVM wITH 33 FEATURES RAVD = RELATIVE ABSOLUTEVOLUME DIFFERENCE(%), ASSD = AVJERAGE
SYMMETRICAL SURFACEDISTANCE (MM), TPR = TRUE POSITIVE RATE (%), FPR = FALSE POSITIVE RATE (%), SC = SCORE.

Ground Truth CHB Rater UNC Rater
Dataset RAVD Sc | ASSD Sc| TPR Sc| FPR Sc|| RAVYD Sc | ASSD Sc| TPR Sc| FPR Sc]| Total
All CHB 112.0 84 72 85| 53.1 81| 78.8 62 114.6 89 45 91| 587 84 | 70.3 67 80
All UNC 151.1 84 124 74 28.2 68| 659 70 300.4 87 13.0 73| 449 76 | 69.6 67 75

[ All Average ]| 128.9 84 | 95 80] 423 75] 732 65]] 1951 88 ] 82 83] 527 81700 67] 78 |

data acquired with different protocols, so-called difféare reached similar performance.
distribution training data’f;), and therefore compared to a For GM/WM/CSF segmentation, a relatively easy task, a
regular supervised classifier, need fewer labeled sampégs tregular SVM on7T, reached the same performance as the
are exactly representative of the target data, the soecsdlme- best transfer classifiers at an earlier point than was the cas
distribution training dataX(,), to obtain the same result. for the lesion segmentation. Also, intuitively transfearieing
could bring more improvement when more features are used,
The benefits of transfer learning over standard supervissidce higher-dimensional feature spaces generally require
learning were evaluated with experiments on WM/GM/CS#raining samples. This could clearly be seen in the experi-
segmentation and WML and MSL segmentation on MRI braiments on WML/MSL segmentation. On the experiments on
scans obtained with various scanners and scan protocdls, virain-tissue classification however, only one of the transf
varying numbers ofl;, samples. The experiments showedlassifiers gave more improvement on the larger feature set.
a clear improvement in performance when transfer learningWe presented and evaluated four transfer classifiers:
was used. Specifically, for a small number Bf samples Weighted SVM (WSVM), Reweighted SVM (RSVM), TrAd-
transfer learning greatly outperformed the supervisedgrieg aBoost, and Adaptive SVM (A-SVM). WSVM showed to
classifiers, minimizing mean classification errors by up toe the most consistent classifier of the four; for a small
60%. Also, when the required accuracy is set, the use ofnamber ofT, samples, it outperformed the regular SVMs on
transfer classifier typically reduces the required numbéf,o all training dataZ and on only7s in all learning curves.
training samples. Ultimately, when enou@h samples were RSVM generally performed similar to the WSVM on the
available to reliably train a supervised classificationesoh, a lesion segmentation experiments, but worse than the WSVM
regular SVM onl; and the best-performing transfer classifieren the WM/GM/CSF segmentation experiments. TrAdaBoost



(d) P(y|x) (e) Segmentation

(h) FLAIR (i) P(ylx) () Segmentation
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Figure 6. Examples of resulting segmentations of the RSVAgdifier on 33 features after training @@ samples from eight images and 4 009 samples.
Figures (d),(i),(n) show the posterior outputs of the dfaegs and Figures (e),(j),(0) show the final segmentatiorbline, the manual segmentation in yellow,
and the overlap between the two in green. The true posities @ PRs) and false positive rates (FPRs) for the showeessliere (e): TPR=92%, FPR=14%,
(): TPR=47%, FPR=49%, (0): TPR=48%, FPR=45%.
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Figure 7. Learning curves for WML/MSL segmentation, shaywmean classification error as a function of the numbet pfsamples on 13 features for
three different normalization techniques. (a) equals thage in Fig. 5(b) and includes range matching between thardtB6th percentile, (b) includes range
matching between the minimum and maximum value, and (cudted the normalization of Nydl et al. [21].

showed the worst results, never outperforming the two baselgive an overall good performance on the lesion-segmenmntatio
supervised-learning classifiers. It especially perforrhadly experiments. A-SVM is the only classifier of the four that sloe
for lesion segmentation, where classification errors meeed not explicitly take theT,; samples into account. It therefore
for an increasing number @f; samples. We think TrAdaBoostincorporates less knowledge of the distribution of the

is likely to experience difficulties when there is class ¢aein samples, such as the amount of class overlap and the class pri
the Ty, samples. Since the weights of misclassifiedsamples probabilities, which might be disadvantageous in somescase
are increased, this can make the classifier focus too muchFurther investigating which of the different transfer clfisrs

a few initially misclassifiedl’s samples. The performance ofare best suitable for which situation might be an intergstin
A-SVM was dependent on the classification task. It performeiirection for future work.

very well on the WM/GM/CSF segmentation experiments ) ) : ,
when more than 15, samples were available, in most cases We also investigated the influence of three image normal-

greatly outperforming all other classifiers, whereas it aid 12210 techniques. In our experiments min-max normabrat
led to larger classification errors than the 4th-96th pdileen



range matching, both between and within sources. The ma@anners. Cocosco et al. [5] used a registered probabilisti
extensive normalization method of Nyl et al. [21] overalissue atlas to automatically select “training” samplesnir
slightly increased classification errors for the WM/GM/CSHarget images, based on which a kNN classifier was trained to
segmentation experiments, and slightly decreased eroors $egment the whole image. Freesurfer [11] first automagicall
WML and MSL segmentation. This is in contrast to resultsegments the voxels with the highest intensities (within a
by Shah et al. [27], who showed that this normalization caiain mask) as WM, after which the GM is identified by
greatly improve performance on images from different sesirc dilation of the WM tissue following the intensity gradients
For all normalization techniques a transfer-learningsifees up until the point where a decrease in intensity indicates
could still bring improvement over the regular classifiershe boundary between GM and CSF. A different often used
indicating that although a more advanced normalizatioegro approach is unsupervised classification by the expectation
dure could reduce differences between images from differanaximization (EM) algorithm [19], [34], [38], [39]. Here
scanners, transfer learning is still beneficial. segmentation of the target data is performed by alternating
In the experiments the SVM parametefs and v were between optimization of the source-specific model pararaete
determined with a regular SVM offy, which gave the given the segmentation of the previous step, and optimizing
regular SVMs an advantage over the transfer classifietbe segmentation given the determined model parametees. Th
The performance of the transfer classifiers may therefostate-of-the-art brain-tissue-segmentation method SP&so
still be improved by determining the optimal and v for based on such an EM-optimization [3]. All these methods do
each classifier separately, for instance by grid search en tiot use any labeled samples of the target data. This makes it
different-distribution sources. To facilitate the largenmber easy to apply these techniques to new data. However, as our
of experiments required for the learning curves however, vegperiment prove superiority of transfer learning over SPM
chose to keep these parameters fixed. The classifier-spedifec may conclude that a small amount of manually labeled
parameters of the transfer classifiers were tuned usings cr@$ data used in a transfer-learning framework, can greatly
validation on the different-distribution sources, assugnthat improve the performance.
the differences and similarities between those sources wer Many of the techniques mentioned above combine voxel-
representative of the differences and similarities that ba wise classification with atlas-based prior tissue prolités|
expected in general betwedh andT,; data. Another option partial-volume modeling, and/or Markov-Random-Field mod
would be to includel; data when determining the transfeeling. In this work we have restricted ourselves to voxedwis
parameters. As we wanted to study the behavior of the transftassification, to allow for a direct comparison of the diéet
classifiers also for very few, samples, this technique wasearning techniques. However, the established transtemring
only used in the experiments for the MS-lesion challenge. flamework could also be used as the basis of a more advanced
could also be beneficial to apply different transfer paramset segmentation scheme, replacing the voxelwise classditati
for each of the different-distribution sources, dependimg step in any of the mentioned techniques.
the similarity with the target data. Exploring other ways of In the experiments we have focused on MRI brain segmen-
determining classifier parameters will be a topic of furthdation. However, the variability in imaging protocols fasm
research. common problem across most applications. We expect that
The three transfer classifiers WSVM, RSVM, and A-SVMransfer learning can also improve supervised algorithms i
provided good segmentations in comparison to results tepormany other segmentation and image analysis tasks.
in literature. In Table | we compared our WM/GM/CSF We believe that transfer learning is a promising approach to
segmentations to segmentations obtained with SPM8 [3],biwmedical image analysis. In applications for which daithw
state-of-the-art brain-tissue segmentation tool. On alirf ground truth labels is available from other studies, transf
sources WSVM, RSVM, and A-SVM outperformed SPM8learning can significantly decrease the amount of represen-
In Table 1l we reported the performance of various method@tive training data needed. This facilitates the appbeat
on the IBSR data with 20 subjects. Our transfer classifiep§ supervised techniques in large multi-center studies iand
outperformed 12 of the 16 methods. One of the methods tigdinical practice.
outperformed our classifiers was trained and tested in cross
validation, using many more same-distribution trainingges VIl. ACKNOWLEDGMENTS

than our methods, and the other three used a much morerhis research was performed as part of the research project
sophisticated bias-correction scheme. Using our methsdsfransfer learning in biomedical image analysis’ which is

part of such a scheme could increase the performance on iianced by The Netherlands Organization for Scientific Re-
dataset. Also, in the MRBrainSidrain-tissue-segmentationsearch (NWO).

challenge our SVM classification scheme ranked second, onlyrhe IBSR MR brain data sets and their manual segmenta-
to be beaten by a semi-automatic method. In the MS-lesi@Bns were provided by the Center for Morphometric Analysis
challenge our RSVM ranked second out of nine methods @f Massachusetts General Hospital.
all test data, and tenth out of 26 methods on a subset.
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