157 research outputs found

    Control of human gait stability through foot placement

    Get PDF
    During human walking, the centre of mass (CoM) is outside the base of support for most of the time, which poses a challenge to stabilizing the gait pattern. Nevertheless, most of us are able to walk without substantial problems. In this review, we aim to provide an integrative overview of how humans cope with an underactuated gait pattern. A central idea that emerges from the literature is that foot placement is crucial in maintaining a stable gait pattern. In this review, we explore this idea; we first describe mechanical models and concepts that have been used to predict how foot placement can be used to control gait stability. These concepts, such as for instance the extrapolated CoM concept, the foot placement estimator concept and the capture point concept, provide explicit predictions on where to place the foot relative to the body at each step, such that gait is stabilized. Next, we describe empirical findings on foot placement during human gait in unperturbed and perturbed conditions. We conclude that humans show behaviour that is largely in accordance with the aforementioned concepts, with foot placement being actively coordinated to body CoM kinematics during the preceding step. In this section, we also address the requirements for such control in terms of the sensory information and the motor strategies that can implement such control, as well as the parts of the central nervous system that may be involved. We show that visual, vestibular and proprioceptive information contribute to estimation of the state of the CoM. Foot placement is adjusted to variations in CoM state mainly by modulation of hip abductor muscle activity during the swing phase of gait, and this process appears to be under spinal and supraspinal, including cortical, control. We conclude with a description of how control of foot placement can be impaired in humans, using ageing as a primary example and with some reference to pathology, and we address alternative strategies available to stabilize gait, which include modulation of ankle moments in the stance leg and changes in body angular momentum, such as rapid trunk tilts. Finally, for future research, we believe that especially the integration of consideration of environmental constraints on foot placement with balance control deserves attention

    Effects of constrained trunk movement on frontal plane gait kinematics

    Get PDF
    Previously it has been shown that constraining step width in gait coincides with decreased trunk displacements. Conversely, external stabilization of the upper body in gait coincides with decreased step width, but this may in part be due to changes in passive dynamics of the leg. In the present study, trunk kinematics during gait were constrained without external stabilization by using an orthosis, to investigate whether step width and dynamic gait stability in the ML direction are changed in relation to trunk kinematics. Nine healthy young adults walked on a treadmill at three different speeds with no intervention and while wearing a thoracolumbar orthosis. Based on marker trajectories, trunk COM displacement, body COM displacement and velocity, step width, and margin-of-stability in ML direction were calculated. The results showed that the orthosis significantly reduced trunk and body COM displacements. As hypothesized, the restriction of trunk movement coincided with significantly decreased step width, while the margin-of-stability was not affected. These findings indicate that, when trunk movements are constrained, humans narrow step width, while maintaining a constant margin-of-stability. In conclusion, the present results in combination with previous work imply that in gait a reciprocal coupling between trunk kinematics and foot placement in the frontal plane subserves control of stability in the frontal plane

    Gait stability at early stages of multiple sclerosis using different data sources

    Get PDF
    Background: People at early stages of multiple sclerosis have subtle balance problems that may affect gait stability. However, differences in methods of determining stability such as sensor type and placements, may lead to different results and affect their interpretation when comparing to controls and other studies. Questions: Do people with multiple sclerosis (PwMS) exhibit lower gait stability? Do location and type of data used to calculate stability metrics affect comparisons? Methods: 30 PwMS with no walking impairments as clinically measured and 15 healthy controls walked on a treadmill at 1.2 ms−1 while 3D acceleration data was obtained from sacrum, shoulder and cervical markers and from an accelerometer placed at the sacrum. The local divergence exponent was calculated for the four data sources. An ANOVA with group (multiple sclerosis and control) and data source as main factors was used to determine the effect of disease, data source and their interaction on stability metrics. Results: PwMS walked with significantly less stability according to all sensors (no interaction). A significant effect of data source on stability was also found, indicating that the local divergence exponent derived from sacrum accelerometer was lower than that derived from the other 3 sensor locations. Significance: PwMS with no evident gait impairments are less stable than healthy controls when walking on a treadmill. Although different data sources can be used to determine MS-related stability deterioration, a consensus about location and data source is needed. The local divergence exponent can be a useful measure of progression of gait instability at early stages of MS

    Head orientation and gait stability in young adults, dancers and older adults

    Get PDF
    Background: Control of body orientation requires head motion detection by the vestibular system and small changes with respect to the gravitational acceleration vector could cause destabilization. Research question: We aimed to compare the effects of different head orientations on gait stability in young adults, dancers and older adults. Methods: Three groups of 10 subjects were evaluated, the first composed of young adults (aged 18–30 years), the second composed of young healthy dancers under high performance dance training (aged 18–30 years), and the third group composed of community-dwelling older adults (aged 65–80 years). Participants walked on a treadmill at their preferred speed in four distinct head orientation conditions for four minutes each: control (neutral orientation); dynamic yaw (following a target over 45° bilaterally); up (15° neck extension), and down (40° neck flexion). Foot and trunk kinematic data were acquired using a 3D motion capture system and the gait pattern was assessed by basic gait parameters (step length, stride width and corresponding variability) and gait stability (local divergence exponents and margins of stability). Main effects of conditions and groups, as well as their interaction effects, were evaluated by repeated-measures analysis of variance. Results: Interactions of group and head orientation were found for both step length and stride width variability; main effects of head orientation were found for all evaluated parameters and main effects of group were found for step length and its variability and local divergence exponents in all directions. Significance: As expected, the older adults group showed less stable gait (higher local divergence exponent), the shortest step length and greater step length variability. However, contrary to expectation, the dancers were not more stable. The yaw condition was the most challenging for all groups and the down condition seemed to be least challenging

    Limitation of Ankle Mobility Challenges Gait Stability While Walking on Lateral Inclines

    Get PDF
    Exoskeletons often allow limited movement of the ankle joint. This could increase the chance of falling while walking, particularly on challenging surfaces, such as lateral inclines. In this study, the effect of a mobility limiting ankle brace on gait stability in the frontal plane was assessed, while participants walked on lateral inclines. The brace negatively affected gait stability when it was worn on the leg that was on the vertically lower side or ‘valley side’ of the lateral incline, which would indicate an increased risk of falling in that direction.</p

    Do Older Adults Select Appropriate Motor Strategies in a Stepping-Down Paradigm?

    Get PDF
    Selecting motor strategies in daily life tasks requires a perception of the task requirements as well as of one's own physical abilities. Age-related cognitive and physical changes may affect these perceptions. This might entail that some older adults select inappropriate movement strategies when confronted with daily-life motor tasks, which could lead to balance loss or falls. We investigated whether older adults select motor strategies in accordance with their actual physical ability. Twenty-one older adults were subjected to a stepping down paradigm, in which full-body kinematics of selected and reactive behavior were recorded. Stepping down from a curb can be done with either (1) a relatively low effort but more balance threatening heel landing, or (2) a more controlled but more demanding toe landing. The probability of selecting a toe landing grows with an increase in curb height. We determined the curb height at which participants switched from heel to toe landing during expected stepping down over different heights as an indicator of their perceived ability. During an unexpected step down trial, participants encountered a step down of 0.1 m earlier than expected, because part of the walkway was removed and covered by a black cloth. We evaluated participants' actual physical ability from the reactive behavior, with performance defined as the reduction in kinetic energy between the peak value after landing and the onset of the next step. To unravel whether the selected motor strategies corresponded with actual physical ability, the ability to recover from the unexpected step down was correlated to the height at which the participants switched movement strategy. The switching height was not correlated to the ability to recover from an unexpected step down (ρ = 0.034, p = 0.877). This finding suggests that older adults do not select their movement strategy in stepping down based on their actual abilities, or have an imprecise perception of their actual abilities. Future research should evaluate whether inappropriate motor strategy selection in a stepping down paradigm can explain accidental falls in older adults

    Virtual obstacle crossing:Reliability and differences in stroke survivors who prospectively experienced falls or no falls

    Get PDF
    Introduction Stroke survivors often fall during walking. To reduce fall risk, gait testing and training with avoidance of virtual obstacles is gaining popularity. However, it is unknown whether and how virtual obstacle crossing is associated with fall risk. Aim The present study assessed whether obstacle crossing characteristics are reliable and assessed differences in stroke survivors who prospectively experienced falls or no falls. Method We recruited twenty-nine community dwelling chronic stroke survivors. Participants crossed five virtual obstacles with increasing lengths. After a break, the test was repeated to assess test-retest reliability. For each obstacle length and trial, we determined; success rate, leading limb preference, pre and post obstacle distance, margins of stability, toe clearance, and crossing step length and speed. Subsequently, fall incidence was monitored using a fall calendar and monthly phone calls over a six-month period. Results Test-retest reliability was poor, but improved with increasing obstacle-length. Twelve participants reported at least one fall. No association of fall incidence with any of the obstacle crossing characteristics was found. Discussion Given the absence of height of the virtual obstacles, obstacle avoidance may have been relatively easy, allowing participants to cross obstacles in multiple ways, increasing variability of crossing characteristics and reducing the association with fall risk. Conclusion These finding cast some doubt on current protocols for testing and training of obstacle avoidance in stroke rehabilitation

    Does a Perturbation Based Gait Intervention Enhance Gait Stability in Fall Prone Stroke Survivors?:A Pilot Study

    Get PDF
    A recent review indicated that perturbation based training (PBT) interventions are effective in reducing falls in older adults and patients with Parkinson's disease. It is unknown whether this type of intervention is effective in stroke survivors. We determined whether PBT can enhance gait stability in stroke survivors. Ten chronic stroke survivors who experienced falls in the past six months participated in the PBT. Participants performed 10 training sessions over a six-week period. The gait training protocol was progressive and each training contained, unexpected gait perturbations and expected gait perturbations. Evaluation of gait stability was performed by determining steady-state gait characteristics and daily-life gait characteristics. We previously developed fall prediction models for both gait assessment methods. We evaluated whether predicted fall risk was reduced after PBT according to both models. Steady-state gait characteristics significantly improved and consequently predicted fall risk was reduced after the PBT. Daily-life gait characteristics, however, did not change and thus predicted fall risk based on daily-life gait remained unchanged after the PBT. A PBT resulted in more stable gait on a treadmill and thus lower predicted fall risk. However, the more stable gait on the treadmill did not transfer to a more stable gait in daily life

    Coordination of Axial Trunk Rotations During Gait in Low Back Pain. A Narrative Review

    Get PDF
    Chronic low back pain patients have been observed to show a reduced shift of thorax-pelvis relative phase towards out-of-phase movement with increasing speed compared to healthy controls. Here, we review the literature on this phase shift in patients with low back pain and we analyze the results presented in literature in view of the theoretical motivations to assess this phenomenon. Initially, based on the dynamical systems approach to movement coordination, the shift in thorax-pelvis relative phase with speed was studied as a self-organizing transition. However, the phase shift is gradual, which does not match a self-organizing transition. Subsequent emphasis in the literature therefore shifted to a motivation based on biomechanics. The change in relative phase with low back pain was specifically linked to expected changes in trunk stiffness due to ‘guarded behavior’. We found that thorax-pelvis relative phase is affected by several interacting factors, including active drive of thorax rotation through trunk muscle activity, stride frequency and the magnitude of pelvis rotations. Large pelvis rotations and high stride frequency observed in low back pain patients may contribute to the difference between patients and controls. This makes thorax-pelvis relative phase a poor proxy of trunk stiffness. In conclusion, thorax-pelvis relative phase cannot be considered as a collective variable reflecting the orderly behaviour of a complex underlying system, nor is it a marker of specific changes in trunk biomechanics. The fact that it is affected by multiple factors may explain the considerable between-subject variance of this measure in low back pain patients and healthy controls alike

    Sensitivity of Local Dynamic Stability of Over-Ground Walking to Balance Impairment Due to Galvanic Vestibular Stimulation

    Get PDF
    Impaired balance control during gait can be detected by local dynamic stability measures. For clinical applications, the use of a treadmill may be limiting. Therefore, the aim of this study was to test sensitivity of these stability measures collected during short episodes of over-ground walking by comparing normal to impaired balance control. Galvanic vestibular stimulation (GVS) was used to impair balance control in 12 healthy adults, while walking up and down a 10 m hallway. Trunk kinematics, collected by an inertial sensor, were divided into episodes of one stroll along the hallway. Local dynamic stability was quantified using short-term Lyapunov exponents (λs), and subjected to a bootstrap analysis to determine the effects of number of episodes analysed on precision and sensitivity of the measure. λs increased from 0.50 ± 0.06 to 0.56 ± 0.08 (p = 0.0045) when walking with GVS. With increasing number of episodes, coefficients of variation decreased from 10 ± 1.3% to 5 ± 0.7% and the number of p values >0.05 from 42 to 3.5%, indicating that both precision of estimates of λs and sensitivity to the effect of GVS increased. λs calculated over multiple episodes of over-ground walking appears to be a suitable measure to calculate local dynamic stability on group level
    corecore