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Previously it has been shown that constraining step width in gait coincides with decreased trunk dis-
placements. Conversely, external stabilization of the upper body in gait coincides with decreased step
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width, but this may in part be due to changes in passive dynamics of the leg. In the present study, trunk
kinematics during gait were constrained without external stabilization by using an orthosis, to investi-
gate whether step width and dynamic gait stability in the ML direction are changed in relation to trunk
kinematics. Nine healthy young adults walked on a treadmill at three different speeds with no inter-
vention and while wearing a thoracolumbar orthosis. Based on marker trajectories, trunk COM dis-
placement, body COM displacement and velocity, step width, and margin-of-stability in ML direction
were calculated. The results showed that the orthosis significantly reduced trunk and body COM dis-
placements. As hypothesized, the restriction of trunk movement coincided with significantly decreased
step width, while the margin-of-stability was not affected. These findings indicate that, when trunk
movements are constrained, humans narrow step width, while maintaining a constant margin-of-
stability. In conclusion, the present results in combination with previous work imply that in gait a
reciprocal coupling between trunk kinematics and foot placement in the frontal plane subserves control
of stability in the frontal plane.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic stability of gait requires regulation of the centre of
mass (COM) position with respect to the base of support (BOS),
which in the ML direction requires active control (Bauby and Kuo,
2000). Half of the whole body mass is located in the trunk seg-
ment (Jensen and Fletcher, 1994) and therefore the trunk segment
needs to be controlled in relation to the lateral border of the BOS
(Woollacott and Tang, 1997), which is determined by mediolateral
foot placement.

In a previous study, we showed that walking with a narrower
step width coincides with changes in the COM kinematics, sug-
gesting that trunk kinematics are adjusted when step width is
constrained (Arvin et al., 2016). In addition, previous studies have
shown a correlation between frontal plane trunk kinematics dur-
ing the swing phase of gait and control of the subsequent step
width (Hurt et al., 2010; Wang and Srinivasan, 2014), which in
turn, was shown to be correlated with swing leg gluteus medius
activity (Rankin et al., 2014). While these findings were inter-
preted as indicative of foot placement being adjusted to trunk
kinematics, the observational nature of these studies does not
ststraat 9, 1081 BT Amsterdam,

.

exclude the opposite, i.e. adjustment of trunk kinematics to the
planned, future foot placement. Experimental evidence, in line
with foot placement being guided based on trunk kinematics, was
provided by studies on walking with external pelvic stabilization.
This manipulation decreases lateral displacement of the COM and
coincides with decreased step width and step width variability
(Donelan et al., 2004; Ijmker et al., 2013; Veneman et al., 2008).
However, the external stabilization, which couples the subject's
pelvis mechanically to an external rigid frame, limits pelvis
movements (IJmker et al., 2014). This in turn may affect the pas-
sive dynamics of the swing leg in the frontal plane, which could
account for effects on foot placement.

To test the effects of trunk kinematics on step width without
external stabilization, we used a trunk orthosis in the present
study to constrain trunk movement. First, we examined whether
our experimental set-up was successful in restricting the trunk (in
local and global reference frames) and total body COM movement
(in the global reference frame) over a range of gait speeds. If so, we
hypothesized that smaller movements of the trunk segment
would coincide with a narrower step width. In addition, we
investigated its effects on dynamic stability in the frontal plane, in
terms of the margin of stability (MOS) as proposed by Hof et al.
(2005). To further explain the relationship between trunk move-
ment and step width, we analyzed trunk, pelvis, and hip angles.
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Fig. 1. Anterior and posterior views of the trunk orthosis.

M. Arvin et al. / Journal of Biomechanics 49 (2016) 3085–30893086
2. Methods

2.1. Participants

Nine healthy young adults (all males, mean age 23 SD 3 years; height 1.80 SD
0.05 m; body mass 69 SD 4 kg) voluntarily participated in this study. They were
included if they had no known pathology, including neurological or orthopaedic
disorders that would interfere with gait. The local ethics committee approved
the protocol and all participants gave their written, informed consent before
participation.

2.2. Experimental protocol

Participants were asked to walk on a treadmill (EN-BO system, Bonte tech-
nology, Amsterdam, The Netherlands) at speeds of 3.6, 4.4, and 5.2 km/h, in two
different conditions. First they walked normally with no intervention (reference
condition). Subsequently, they walked with a trunk orthosis (Aspen LSO, Aspen
Medical Products, Long Beach, CA, USA), which restricted the trunk motion at the
level of the thoracolumbar spine (orthosis condition; Fig. 1). The speed trials were
performed in order of increasing speed, and the experiment always started with
the reference condition, followed by the orthosis condition. For all trials and con-
ditions, the participants walked for 35 s, while the measurements were performed
during the final 20 s. Before the measurement, the participants had 2.5 min to get
used to each condition.

2.3. Data collection

The Optotrak LED marker clusters were attached with straps on the posterior
surface of the heels, shanks, thighs, arms, forearms, and the thorax at the level of
T1. The cluster for the pelvis was placed laterally at the left hand side distal to the
iliac crest to avoid contact with the brace. The markers were tracked by two
Optotrak camera systems (Optotrak

s

Northern Digital Inc., Waterloo, Ontario) at 50
samples/s.

Before the trials, anatomical landmarks were digitized in an upright posture,
using a probe with six markers. A 3D linked segment model, developed by Kingma
et al. (1996), was used to calculate the trajectories of the segments based on the x, y
and z coordinates of the markers and anatomical landmarks. All trajectories were
low pass filtered with a cut off frequency of 5 Hz. The mass of each segment was
estimated based on the segment lengths plus segment circumference (Zatsiorsky,
2002), anthropometric parameters and sex (Faber et al., 2013). Body COM was
calculated as the weighted sum of segment COM over all segments.

2.4. Data analysis

The instants of right heel strike (rHS) were detected as the local minima of the
right toe landmark vertical velocity (Pijnappels et al., 2001). For further analyses,
the time-series in the ML direction were used to calculate the parameters in the
frontal plane. The mean value of all variables was obtained by averaging over 20 s
of walking, which contained 17 (SD 1) strides.
2.5. Trunk and whole body COM kinematics

To test whether our experimental set-up was successful in constraining the
trunk kinematics, the peak-to-peak amplitudes of the local (with respect to the
pelvis) and global trunk displacements in ML direction were calculated between
two subsequent rHS. Local trunk displacement was estimated as the relative dis-
placement between the clusters on pelvis and thorax. Trunk and body COM velocity
in ML direction were calculated as the first derivatives of the position time-series.
The ML body COM position and velocity were used to calculate the peak-to-peak
amplitudes within each stride, which were again averaged over strides.

2.6. Step width and dynamic stability

To test the effect of restricted trunk kinematics on foot placement and gait
dynamic stability in frontal plane, the step width was calculated as the distance
between right and left heel in ML direction at rHS. The extrapolated COM was
calculated based on ML body COM position and velocity time series (Hof et al.,
2005). The minimal distance between the heel and extrapolated COM within each
stance phase was calculated and averaged over trials to obtain an estimate of the
margin of stability (MOS) (Hof et al., 2005).

2.7. Pelvis and hip angles

To assess how hip movements link trunk kinematics to foot placement, the
local trunk lateral flexion angle with respect to the pelvis segment, the global pelvis
tilt angle, i.e., the pelvis orientation in the frontal plane, and local hip abduction/
adduction angles with respect to the pelvis segment were calculated based on ISB
recommendations (Wu et al., 2002). Peak left and right trunk lateral flexion, pelvis
up- and downward tilt and hip adduction and abduction angles were defined as the
minima and maxima between two subsequent rHS. Peak angles were averaged over
strides and hip angles also over left and right sides.

2.8. Statistics

The assumption of normality was checked by the Shapiro-Wilks test. Homo-
geneity of variance was checked using Levene's test. No violations of these
assumptions were found. To test whether the trunk orthosis affected the depen-
dent variables at different gait speeds, two-way (conditions [reference, orthosis]�
speed [3.6, 4.4, 5.2 km/h]) repeated measures analyses of variance (ANOVA) were
performed. Bonferroni corrected post-hoc paired t-tests were used to determine at
which speeds significant differences occurred between conditions. For all analyses,
p-valueso0.05 were considered significant and statistical analyses were per-
formed using IBM SPSS statistics 21.0.
3. Results

All ANOVA results are summarized in Table 1.
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3.1. Trunk and body COM kinematics

Mediolateral trunk displacements and velocity in the global
and local coordinate systems were significantly lower when par-
ticipants walked with the trunk orthosis in comparison to the
reference condition (Fig. 2). For local trunk velocity an interaction
between orthosis and speed was found, but the effect of orthosis
was consistent across speeds. With respect to the ML body COM
kinematics, displacement and velocity were lower when walking
with the trunk orthosis.
Table 1
Results of ANOVAs for effects of orthosis and gait speed and their interaction.

Orthosis Speed Orthosis*Speed

F1,8 p F2,8 p F2,8 p

Local trunk displacement 11.9 0.009 1.2 0.322 1.0 0.380
Local trunk velocity 24.6 0.001 9.9 0.002 7.9 0.004
Global trunk displacement 8.5 0.019 49.4 o0.001 0.3 0.751
Global trunk velocity 6.17 0.038 11.5 o0.001 6.0 0.011
COM displacement 10.6 0.012 21.9 o0.001 2.5 0.115
COM velocity 13.2 0.007 9.4 0.002 0.7 0.492
Step width 5.5 0.047 1.7 0.212 0.9 0.422
Margin of Stability 0.5 0.504 40.5 o0.001 1.6 0.231
Local trunk flexion 17.7 0.003 24.5 o0.001 3.9 0.042
Pelvis tilt 17.5 0.003 22.5 o0.001 6.5 0.008
Hip adduction (stance) 3.1 0.114 34.9 o0.001 4.9 0.022
Hip abduction (swing) 3.1 0.114 2.3 0.137 0.6 0.540

Fig. 2. Group averages of peak-to peak displacement and velocity of the trunk and of t
(white bars) conditions at three gait speeds. The error bars indicate standard deviation
3.2. Step width and dynamic stability

In line with our hypothesis, participants walked with sig-
nificantly narrower steps in the orthosis condition than in the
reference condition, while speed did not affect step width (Fig. 3).
The orthosis condition did not affect the MOS, but MOS increased
slightly with increasing speed. These results may suggest that step
width is regulated to attain a constant MOS in the frontal plane.

3.3. Trunk, pelvis and hip angles

In line with the trunk kinematics, local trunk lateral flexion was
significantly smaller in the trunk orthosis condition compared to
the reference condition (Fig. 4). Furthermore, with the orthosis,
the downward tilt of the pelvis on the swing side was significantly
decreased. As indicated by an interaction of orthosis and speed,
the concomitant hip adduction on the stance side was decreased
at the two higher gait speeds. Hip abduction angles of the swing
leg were not significantly affected by wearing the orthosis. Overall
these results suggest that step width regulation was partially
achieved through control of pelvis tilt over the stance leg, instead
of modulation of swing leg abduction.
4. Discussion

4.1. Trunk and whole body kinematics

The trunk orthosis successfully constrained ML trunk kine-
matics, in terms of angular movement relative to the pelvis as well
he body COM in the frontal plane for the reference (black bars) and trunk orthosis
s.



Fig. 3. Group averages of step width and frontal plane Margin of stability for the reference (black bars) and trunk orthosis (white bars) conditions at three gait speeds. The
error bars indicate standard deviations.

Fig. 4. Group averages of peak-to-peak trunk lateral bending and pelvis tilt and group averages of peak hip adduction in the stance phase and peak hip abduction angles in
the swing phase for the reference (black bars) and trunk orthosis (white bars) conditions at three gait speeds. The error bars indicate standard deviations.
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as translation in the global coordinate system. Previous studies
(Donelan et al., 2004; Veneman et al., 2008) used lateral stabili-
zation of the pelvis level to stabilize movement in the frontal
plane. An important difference between lateral stabilization and
our approach using a trunk orthosis is the (absence) of mechanical
coupling to an external support. Nevertheless, the orthosis also
restricted ML trunk kinematics in the global coordinate system.
This confirmed that our experimental set-up allowed examining
the effect of the trunk kinematics on foot placement and dynamic
stability in the frontal plane, while avoiding mechanical effects of
the fixation on leg dynamics.

4.2. Step width and dynamic stability

As hypothesized, the decreased ML trunk and whole body COM
displacement coincided with narrower steps. The present results in
combination with our previous work (Arvin et al., 2016) imply that
in gait a reciprocal coupling between trunk kinematics and foot
placement in the frontal plane subserves control of stability. This
suggests that humans take advantage of the constrained trunk
movement, possibly to lower the energy cost of walking by nar-
rowing step width (Donelan et al., 2004; Ijmker et al., 2013). The
constant MOS would then suggest that dynamic stability functions
as a constraint in optimizing energetic costs. Ijmker et al. (2013)
found that lateral pelvis stabilization caused a 24% decrease in step
width coinciding with a 6% decrease in energetic costs. It should be
noted that the decrease in step width shown here of about 4% was
much smaller than this and hence it is unsure whether this would
to lead a notable decrease in energy costs.
4.3. Pelvis and hip angles

Walking with the orthosis coincided with a decrease in the
downward tilt of the pelvis on the swing side during stance phase
of gait. The angular movement of the trunk and pelvis segments
are coupled out of phase (Krebs et al., 1992). Possibly, the con-
strained lateral bending of the trunk due to the orthosis caused the
reduction in pelvis drop on the swing side. The changes in pelvis
kinematics may have contributed to changes in step width parti-
cularly because swing hip abduction angle was not significantly
affected by wearing the trunk orthosis.
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