1,483 research outputs found
Does the tail wag the dog? How the structure of a glycosylphosphatidylinositol anchor affects prion formation
There is increasing interest in the role of the glycosylphosphatidylinositol (GPI) anchor attached to the cellular prion protein (PrP(C)). Since GPI anchors can alter protein targeting, trafficking and cell signaling, our recent study examined how the structure of the GPI anchor affected prion formation. PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc) in prion-infected neuronal cell lines and in scrapie-infected primary cortical neurons. In uninfected neurons desialylated PrP(C) was associated with greater concentrations of gangliosides and cholesterol than PrP(C). In addition, the targeting of desialylated PrP(C) to lipid rafts showed greater resistance to cholesterol depletion than PrP(C). The presence of desialylated PrP(C) caused the dissociation of cytoplasmic phospholipase A(2) (cPLA(2)) from PrP-containing lipid rafts, reduced the activation of cPLA(2) and inhibited PrP(Sc) production. We conclude that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation
A Case Study of Rock-Fluid Interaction in the Enhanced Geothermal System in Cooper Basin, South Australia
This study was undertaken to observe mineral dissolution with replacing circulating fluid with fresh water every 24 hours. This was an attempt to accelerate the dissolution rate and to mimic the condition of a geothermal site when fresh water or treated water from a precipitation tank is reinjected to the fracture. The experiments were carried out in a titanium flow through cell for 1, 7, and 28 days at 250°C and 40 bars. Water analysis was performed using ICP-MS, and rock analyses were conducted using SEM, XRD and XRF. The experimental results revealed a linear correlation of mineral (element) dissolution at the early stages of the experiment. However at later stages, the mineral dissolution proceeds at a slower rate. This may have been caused by the exhaustion of a more soluble mineral phase in the sample. Therefore, this may cause the pore size in the fracture path size to enlarge. SEM observations showed evidence of etching of the mineral surfaces consistent with partial dissolution. SEM backscattered images reveals that mostly quartz phase (SiO₂) remains after 28 days of circulation. XRD results complement these finding, that quartz was stable throughout the experiment, and that the albite-feldspar (NaAlSi₃O₈) and microcline (KALSi₃O₈) in the rock had partially dissolved. As well, ICP-MS analysis of water samples confirmed that some mineral dissolution occurred. XRF study was used to generate an elemental mass balance. Determination of the dissolution kinetics of the various minerals phase is being undertaken.Gideon Kuncoro, Yung Ngothai, Brian O'Neill, Allan Pring, Joël Bruggerhttp://www.chemeca2010.com/abstract/270.as
One Hundred Years Later: Stern-Gerlach Experiment and Dimension Witnesses
Inspired by the one-hundredth anniversary of the seminal works of Stern and
Gerlach, our contribution is a proposal of how to use their famous experiment
in a more contemporary perspective. Our main idea is to re-cast the experiment
in the modern language of prepare-and-measure scenarios. By doing so, it is
possible to connect geometric and algebraic aspects of the space of states with
the physical space. We also discuss possible simulations of the SG experiment
as well as some experimental properties of the experiment revealed at the
statistical level. Merging a more modern perspective with a paradigmatic
experiment, we hope this paper can serve as an entry door for quantum
information theory and the foundations of quantum mechanics.Comment: 23 pages, 6 figures. Minor adjustments, according to referee
suggestion
The Impact of Vacuum Gate Valves on the LHC Beam
The LHC vacuum sector valves are located in the straight sections of the LHC ring, and designed to sectorize the LHC vacuum. The valves are interlocked and should trigger a beam dump request if they close on a circulating beam. This report studies the impact on the machine if this request is not made and the valve scrapes the LHC beam halo. Cascade calculations are made using a model of IR7, with several different valve locations, to calculate the downstream energy deposition in superconducting magnet coils and the corresponding signal in beam loss monitors at the quench level. The calculations are done at 7, 5, and 3.5 TeV. It is found that when a downstream magnet reaches the quench level, the neighbouring BLMs see a signal well above the detection threshold. Furthermore, the BLM signal is consistent with the BLM applied threshold settings and a signal is seen in the time domain before the quench level is reached. Therefore the report concludes that the BLMs can see the closing valve and trigger a beam dump before the quench (or damage) level is reached
Variations in air quality of new Ohio dairy facilities with natural ventilation systems
As dairy operations evolve towards larger, concentrated facilities, air quality on and around the dairy farms becomes a concern. Data on air quality in and around large dairy facilities are insufficient and therefore very much needed. In this study, preliminary data on air quality spatial distribution and temporal variations on two new large dairy facilities with naturally ventilated free stall barns and outside manure storage were collected. Concentration of hydrogen sulfide (H2S) and ammonia (NH3) at 12 to 14 locations on each farm were measured in three seasons using portable gas analyzers. Odor samples were collected at odor sources, upwind and downwind locations. Dust was measured using a portable dust mass concentration meter Gas levels inside the dairy buildings at one leeward location were continuously monitored for three days in two seasons. In addition, indoor and outdoor temperature, relative humidity, and air velocity were measured to determine effects of these parameters on air quality.
The study found that manure storage ponds have the most effect on air quality during warm and hot seasons. Variations of air quality inside the dairy building were insignificant. Inside the dairy buildings, the average dust mass concentrations range from 0.9 to 1.5 mg m(-3); ammonia 1.4 to 3 ppm, hydrogen sulfide 2 to 32 ppb; and odor concentration 90 to 140 OU m(-3). However at the downwind berm of the manure storage ponds, odor concentration reached 1256 OU/m(3) during the hot weather months. Weather conditions also affected the outdoor dispersion of air emissions. Most of the time, gas levels at 152 m downwind of the barn and manure storage were similar to upwind levels, but on hot and windy days these levels reached a point high enough to raise concerns. Inside the building, the hydrogen sulfide concentrations were not significantly different from hour to hour within a day or from day to day within a season. Although daily variation of mean ammonia concentrations were significantly different, hourly mean ammonia concentrations were not significantly different between morning hours and afternoon hours within any given day
Unit cell of graphene on Ru(0001): a 25 x 25 supercell with 1250 carbon atoms
The structure of a single layer of graphene on Ru(0001) has been studied
using surface x-ray diffraction. A surprising superstructure has been
determined, whereby 25 x 25 graphene unit cells lie on 23 x 23 unit cells of
Ru. Each supercell contains 2 x 2 crystallographically inequivalent subcells
caused by corrugation. Strong intensity oscillations in the superstructure rods
demonstrate that the Ru substrate is also significantly corrugated down to
several monolayers, and that the bonding between graphene and Ru is strong and
cannot be caused by van der Waals bonds. Charge transfer from the Ru substrate
to the graphene expands and weakens the C-C bonds, which helps accommodate the
in-plane tensile stress. The elucidation of this superstructure provides
important information in the potential application of graphene as a template
for nanocluster arrays.Comment: 9 pages, 3 figures, paper submitted to peer reviewed journa
Recommended from our members
Characterization of the Subsurface of 67P/Churyumov-Gerasimenko's Abydos Site
We investigate the structure of the subsurface of the Abydos site using a cometary nucleus model with parameters adapted to comet 67P/Churyumov-Gerasimenko and the Abydos landing site. We aim to compare the production rates derived from our model with those of the main molecules measured by Ptolemy. This will allow us to retrieve the depths at which the different molecules still exist in solid form
Searches for Stable Strangelets in Ordinary Matter: Overview and a Recent Example
Our knowledge on the possible existence in nature of stable exotic particles
depends solely upon experimental observation. Guided by this general principle
and motivated by theoretical hypotheses on the existence of stable particles of
strange quark matter, a variety of experimental searches have been performed.
We provide an introduction to the theoretical hypotheses, an overview of the
past searches, and a more detailed description of a recent search for
helium-like strangelets in the Earth's atmosphere using a sensitive laser
spectroscopy method
Evidence of sub-arc mantle oxidation by sulphur and carbon
The oxygen fugacity (ƒO2) of the Earth’s mantle at subduction zones exerts a primary control on the genesis of mineral deposits in the overlying magmatic arcs and on speciation of volcanic gases emitted into the atmosphere. However, the processes governing mantle ƒO2 such as the introduction of oxidised material by subduction are still unresolved. Here, we present evidence for the reduction of oxidised fluid-borne sulphur and carbon during alteration of depleted mantle by slab fluids at ultra-high pressure in the Bardane peridotite (Western Gneiss Region, Norway). Elevated ferric iron in metasomatic garnet, determined using synchrotron X-ray absorption near edge structure (XANES) spectroscopy, indicates that this process drove oxidation of the silicate assemblage. Our finding indicates that subduction oxidises the Earth’s mantle by cycling of sulphur and carbon.This research was funded by a Monash Research
Accelerator Grant to A. Tomkins and by a Society of Economic Geologists (SEG)
student research grant to A. Rielli. O. Nebel was supported through an ARC
DECRA fellowship (DE120100513)
- …