2,516 research outputs found

    "SAMs meet MEMS": surface modification with self-assembled monolayers for the dry-demolding of photoplastic MEMS/NEMS

    Get PDF
    In this contribution we demonstrate the use of self-assembled monolayers (SAMs) as anti-adhesion coating to assist the removal of photoplastic MEMS/NEMS with a patterned metal layer from the surface without wet chemical sacrificial layer etching, so-called 'dry-demolding'. The SAMs functionality here is to reduce the stiction between the surface and a thin evaporated metal film. The double-layer SAM/metal provides enough stability to support subsequent micromachining step

    Fabrication of an in-plane SU-8 cantilever with integrated strain gauge for wall shear stress measurements in fluid flows.

    Get PDF
    We present a cantilever fabricated from the polymer SU-8 for the measurement of wall shear stress in fluid flows. The pressure induced deflection of the cantilever, measured using a calibrated and integrated nichrome strain gauge, can be related to the wall shear stress on the surface. The initial degree of curvature of the cantilever can be controlled via the exposure dose, which allows a small positive deflection to be achieved, and so minimises the intrusion into the flow. Wind tunnel testing results show a sensitivity greater than 2.5 mV/Pa, with a shear stress of 0.38 Pa and excitation of 1 V

    Resonant Photoelectron Diffraction with circularly polarized light

    Full text link
    Resonant angle scanned x-ray photoelectron diffraction (RXPD) allows the determination of the atomic and magnetic structure of surfaces and interfaces. For the case of magnetized nickel the resonant L2 excitation with circularly polarized light yields electrons with a dichroic signature from which the dipolar part may be retrieved. The corresponding L2MM and L3MM Auger electrons carry different angular momenta since their source waves rotate the dichroic dipole in the electron emission patterns by distinct angles

    Fabrication of an active nanostencil with integrated microshutters

    Get PDF
    An active nanostencil, consisting of a thin (200 nm) silicon nitride membrane with attached polysilicon microactuators that can be used to dynamically open and/or close holes in the silicon nitride membrane, is presented. This nanostencil can be used as a shadow mask in an evaporation setup. Main features of the nanostencil are the absence of sacrificial oxide in the final product, strengthening of the membrane by a polysilicon hexagonal structure that is attached directly to the membrane and the use of low-doped regions in the polysilicon to separate the stator and rotor electrically

    Retention of mouth-to-mouth, mouth-to-mask and mouth-to-face shield ventilation

    Get PDF
    Background: Retention of mouth-to-mouth, mouth-to-mask and mouth-to-face shield ventilation techniques is poorly understood.Methods: A prospective randomised clinical trial was undertaken in January 2004 in 70 candidates randomly assigned to training in mouth-to-mouth, mouth-to-mask or mouth-to-face shield ventilation. Each candidate was trained for 10 min, after which tidal volume, respiratory rate, minute volume, peak airway pressure and the presence or absence of stomach inflation were measured. 58 subjects were reassessed 1 year later and study parameters were recorded again. Data were analysed with ANOVA, \textgreekq2 and McNemar tests.Results: Tidal volume, minute volume, peak airway pressure, ventilation rate and stomach inflation rate increased significantly at reassessment with all ventilation techniques compared with the initial assessment. However, at reassessment, mean (SD) tidal volume (960 (446) vs 1008 (366) vs 1402 (302) ml; p<0.05), minute volume (12 (5) vs 13 (7) vs 18 (3) l/min; p<0.05), peak airway pressure (14 (8) vs 17 (13) vs 25 (8) cm H2O; p<0.05) and stomach inflation rate (63% vs 58% vs 100%; p<0.05) were significantly lower with mouth-to-mask and mouth-to-face shield ventilation than with mouth-to-mouth ventilation. The ventilation rate at reassessment did not differ significantly between the ventilation techniques.Conclusions: One year after a single episode of ventilation training, lay persons tended to hyperventilate; however, the degree of hyperventilation and resulting stomach inflation were lower when a mouth-to-mask or a face shield device was employed. Regular training is therefore required to retain ventilation skills; retention of skills may be better with ventilation devices

    A Case Study of Rock-Fluid Interaction in the Enhanced Geothermal System in Cooper Basin, South Australia

    Get PDF
    This study was undertaken to observe mineral dissolution with replacing circulating fluid with fresh water every 24 hours. This was an attempt to accelerate the dissolution rate and to mimic the condition of a geothermal site when fresh water or treated water from a precipitation tank is reinjected to the fracture. The experiments were carried out in a titanium flow through cell for 1, 7, and 28 days at 250°C and 40 bars. Water analysis was performed using ICP-MS, and rock analyses were conducted using SEM, XRD and XRF. The experimental results revealed a linear correlation of mineral (element) dissolution at the early stages of the experiment. However at later stages, the mineral dissolution proceeds at a slower rate. This may have been caused by the exhaustion of a more soluble mineral phase in the sample. Therefore, this may cause the pore size in the fracture path size to enlarge. SEM observations showed evidence of etching of the mineral surfaces consistent with partial dissolution. SEM backscattered images reveals that mostly quartz phase (SiO₂) remains after 28 days of circulation. XRD results complement these finding, that quartz was stable throughout the experiment, and that the albite-feldspar (NaAlSi₃O₈) and microcline (KALSi₃O₈) in the rock had partially dissolved. As well, ICP-MS analysis of water samples confirmed that some mineral dissolution occurred. XRF study was used to generate an elemental mass balance. Determination of the dissolution kinetics of the various minerals phase is being undertaken.Gideon Kuncoro, Yung Ngothai, Brian O'Neill, Allan Pring, JoĂ«l Bruggerhttp://www.chemeca2010.com/abstract/270.as

    Trapping and manipulating neutral atoms with electrostatic fields

    Full text link
    We report on experiments with cold thermal 7^7Li atoms confined in combined magnetic and electric potentials. A novel type of three-dimensional trap was formed by modulating a magnetic guide using electrostatic fields. We observed atoms trapped in a string of up to six individual such traps, a controlled transport of an atomic cloud over a distance of 400Ό\mum, and a dynamic splitting of a single trap into a double well potential. Applications for quantum information processing are discussed.Comment: 4 pages, 4 figure

    An atom fiber for guiding cold neutral atoms

    Full text link
    We present an omnidirectional matter wave guide on an atom chip. The rotational symmetry of the guide is maintained by a combination of two current carrying wires and a bias field pointing perpendicular to the chip surface. We demonstrate guiding of thermal atoms around more than two complete turns along a spiral shaped 25mm long curved path (curve radii down to 200Ό\mum) at various atom--surface distances (35-450Ό\mum). An extension of the scheme for the guiding of Bose-Einstein condensates is outlined

    A large volume cell for in situ neutron diffraction studies of hydrothermal crystallizations

    Get PDF
    A hydrothermal cell with 320 ml internal volume has been designed and constructed for in situneutron diffraction studies of hydrothermal crystallizations. The cell design adopts a dumbbell configuration assembled with standard commercial stainless steel components and a zero-scattering Ti–Zr alloy sample compartment. The fluid movement and heat transfer are simply driven by natural convection due to the natural temperature gradient along the fluid path, so that the temperature at the sample compartment can be stably sustained by heating the fluid in the bottom fluid reservoir. The cell can operate at temperatures up to 300 °C and pressures up to 90 bars and is suitable for studying reactions requiring a large volume of hydrothermal fluid to damp out the negative effect from the change of fluid composition during the course of the reactions. The capability of the cell was demonstrated by a hydrothermal phase transformation investigation from leucite (KAlSi2O6) to analcime (NaAlSi2O6⋅H2O) at 210 °C on the high intensity powder diffractometer Wombat in ANSTO. The kinetics of the transformation has been resolved by collecting diffraction patterns every 10 min followed by Rietveld quantitative phase analysis. The classical Avrami/Arrhenius analysis gives an activation energy of 82.3±1.1 kJ mol−1. Estimations of the reaction rate under natural environments by extrapolations agree well with petrological observations

    Unit cell of graphene on Ru(0001): a 25 x 25 supercell with 1250 carbon atoms

    Full text link
    The structure of a single layer of graphene on Ru(0001) has been studied using surface x-ray diffraction. A surprising superstructure has been determined, whereby 25 x 25 graphene unit cells lie on 23 x 23 unit cells of Ru. Each supercell contains 2 x 2 crystallographically inequivalent subcells caused by corrugation. Strong intensity oscillations in the superstructure rods demonstrate that the Ru substrate is also significantly corrugated down to several monolayers, and that the bonding between graphene and Ru is strong and cannot be caused by van der Waals bonds. Charge transfer from the Ru substrate to the graphene expands and weakens the C-C bonds, which helps accommodate the in-plane tensile stress. The elucidation of this superstructure provides important information in the potential application of graphene as a template for nanocluster arrays.Comment: 9 pages, 3 figures, paper submitted to peer reviewed journa
    • 

    corecore