20 research outputs found

    T-cell-specific peroxisome proliferator-activated receptor gamma depletion inhibits T-cell apoptosis and improves survival of septic mice via an IL-2-dependent mechanism

    Get PDF
    Introduction: Immune paralysis with massive T-cell apoptosis is a central pathogenic event during sepsis and correlates with septic patient mortality. Previous observations implied a crucial role of peroxisome proliferator-activated receptor gamma (PPARγ) during T-cell apoptosis. Methods: To elucidate mechanisms of PPARγ-induced T-cell depletion, we used an endotoxin model as well as the caecal ligation and puncture sepsis model to imitate septic conditions in wild-type versus conditional PPARγ knockout (KO) mice. Results: PPARγ KO mice showed a marked survival advantage compared with control mice. Their T cells were substantially protected against sepsis-induced death and showed a significantly higher expression of the pro-survival factor IL-2. Since PPARγ is described to repress nuclear factor of activated T cells (NFAT) transactivation and concomitant IL-2 expression, we propose inhibition of NFAT as the underlying mechanism allowing T-cell apoptosis. Corroborating our hypothesis, we observed up-regulation of the pro-apoptotic protein BIM and downregulation of the anti-apoptotic protein Bcl-2 in control mice, which are downstream effector proteins of IL-2 receptor signaling. Application of a neutralizing anti-IL-2 antibody reversed the pro-survival effect of PPARγ-deficient T cells and confirmed IL-2-dependent apoptosis during sepsis. Conclusion: Apparently antagonizing PPARγ in T cells might improve their survival during sepsis, which concomitantly enhances defence mechanisms and possibly provokes an increased survival of septic patients

    Picturing of the Lung Tumor Cellular Composition by Multispectral Flow Cytometry

    No full text
    The lung tumor microenvironment plays a critical role in the tumorigenesis and metastasis of lung cancer, resulting from the crosstalk between cancer cells and microenvironmental cells. Therefore, comprehensive identification and characterization of cell populations in the complex lung structure is crucial for development of novel targeted anti-cancer therapies. Here, a hierarchical clustering approach with multispectral flow cytometry was established to delineate the cellular landscape of murine lungs under steady-state and cancer conditions. Fluorochromes were used multiple times to be able to measure 24 cell surface markers with only 13 detectors, yielding a broad picture for whole-lung phenotyping. Primary and metastatic murine lung tumor models were included to detect major cell populations in the lung, and to identify alterations to the distribution patterns in these models. In the primary tumor models, major altered populations included CD324(+) epithelial cells, alveolar macrophages, dendritic cells, and blood and lymph endothelial cells. The number of fibroblasts, vascular smooth muscle cells, monocytes (Ly6C(+) and Ly6C(-)) and neutrophils were elevated in metastatic models of lung cancer. Thus, the proposed clustering approach is a promising method to resolve cell populations from complex organs in detail even with basic flow cytometers

    Hypoxia stimulus: An adaptive immune response during dendritic cell maturation

    Get PDF
    The ‘injury hypothesis’ in organ transplantation suggests that ischemia–reperfusion injury is involved in the adaptative alloimmune response. We previously found that a strong immune/inflammatory response was induced by ischemia during kidney transplantation in rats. We show here that immature dendritic cells (DCs) undergo hypoxia-mediated differentiation comparable to allogeneic stimulation. Hypoxia-differentiated DCs overexpress hypoxia inducible factor-1α (HIF-1α) and its downstream target genes, such as vascular endothelial growth factor or glucose transporter-1. Rapamycin attenuated DC differentiation, HIF-1α expression, and its target gene expression in a dose-dependent manner along with downregulated interleukin-10 secretion. Coculture of hypoxia-differentiated DCs with CD3 lymphocytes induced proliferation of lymphocytes, a process also neutralized by rapamycin. Furthermore, in vivo examination of ischemia–reperfusion-injured mouse kidneys showed a clear maturation of resident DCs that was blunted by rapamycin pretreatment. Our results suggest that hypoxia is a central part of the ‘injury hypothesis’ triggering DC differentiation under hypoxic conditions. Rapamycin attenuates the hypoxic immune-inflammatory response through inhibition of the HIF-1α pathway

    Suppression of Hypoxia-Inducible Factor-1 alpha Contributes to the Antiangiogenic Activity of Red Propolis Polyphenols in Human Endothelial Cells

    No full text
    Polyphenol-enriched fractions from natural sources have been proposed to interfere with angiogenesis in pathological conditions. We recently reported that red propolis polyphenols (RPP) exert antiangiogenic activity. However, molecular mechanisms of this activity remain unclear. Here, we aimed at characterizing molecular mechanisms to explain the impact of RPP on endothelial cells' (EC) physiology. We used in vitro and ex and in vivo models to test the hypothesis that RPP inhibit angiogenesis by affecting hypoxia-inducible factor-1 alpha (HIF1 alpha) stabilization in EC. RPP (10 mg/L) affected angiogenesis by reducing migration and sprouting of EC, attenuated the formation of new blood vessels, and decreased the differentiation of embryonic stem cells into CD31-positive cells. Moreover, RPP (10 mg/L) inhibited hypoxia- or dimethyloxallylglycine-induced mRNA and protein expression of the crucial angiogenesis promoter vascular endothelial growth factor (VEGF) in a time-dependent mariner. Under hypoxic conditions, RPP at 10 mg/L, supplied for 1-4 h, decreased HIF1 alpha protein accumulation, which in turn attenuated VEGF gene expression. In addition, RPP reduced the HIF1 alpha protein half-life from similar to 58 min to 38 min under hypoxic conditions. The reduced HIF1 alpha protein half-life was associated with an increase in the von Hippel-Lindau (pVHL)-dependent proteasomal degradation of HIF1 alpha. RPP (10 mg/L, 4 h) downregulated Cdc42 protein expression. This caused a corresponding increase in pVHL protein levels and a subsequent degradation of HIF1 alpha. In summary, we have elucidated the underlying mechanism for the antiangiogenic action of RPP, which attenuates HIF1 alpha protein accumulation and signaling. J. Nutr. 142: 441-447, 2012.Deutsche Forschungsgemeinschaft [Br 999]Deutsche ForschungsgemeinschaftSander FoundationSander FoundationFoundation for Research Support of the State of Sao Paulo [08/53756-7, FAPESP-08/53755-0, DAAD-A/09/79914]Foundation for Research Support of the State of Sao Paul

    Observing electronic structures on ex-situ grown topological insulator thin films

    No full text
    Topological insulators represent a new state of quantum matter recently discovered with insulating bulk but conducting surface states formed by an odd number of Dirac fermions. In this Letter, we report our recent progress on the study of electronic structures of ex-situ grown topological insulator thin films by angle resolved photoemission spectroscopy (ARPES). We successfully obtained the topological band structures of molecular beam epitaxial HgTe and vapor-solid grown Bi2Te3 thin films after proper surface cleaning procedures. This new development will not only enable us to study more topological insulators that cannot be measured by conventional in-situ ARPES technique (e. g. by cleaving or growing samples in-situ), but also open the door to directly characterize the electronic properties of topological insulators used in functional devices. (C) 2013 WILEY-VCH Verlag GmbH & Co. KGaA, WeinheimMaterials Science, MultidisciplinaryPhysics, AppliedPhysics, Condensed MatterSCI(E)EI7ARTICLE1-2,SI130-132

    Disruption of Prostaglandin E2 Signaling in Cancer-Associated Fibroblasts Limits Mammary Carcinoma Growth but Promotes Metastasis

    No full text
    The activation and differentiation of cancer-associated fibro-blasts (CAF) are involved in tumor progression. Here, we show that the tumor-promoting lipid mediator prostaglandin E2 (PGE(2)) plays a paradoxical role in CAF activation and tumor progression. Restricting PGE(2) signaling via knockout of microsomal prostaglandin E synthase-1 (mPGES-1) in PyMT mice or of the prostanoid E receptor 3 (EP3) in CAFs stunted mammary carcinoma growth associated with strong CAF proliferation. CAF proliferation upon EP3 inhibition required p38 MAPK signaling. Mechanistically, TGF beta-activated kinase-like protein (TAK1L), which was identified as a negative regulator of p38 MAPK activation, was decreased following ablation of mPGES-1 or EP3. In contrast with its effects on primary tumor growth, disruption of PGE2 signaling in CAFs induced epithelial-to-mesenchymal transition in cancer organoids and promoted metastasis in mice. Moreover, TAK1L expression in CAFs was associated with decreased CAF activation, reduced metastasis, and prolonged survival in human breast cancer. These data characterize a new pathway of regulating inflammatory CAF activation, which affects breast cancer progression. Significance: The inflammatory lipid prostaglandin E2 suppresses cancer-associated fibroblast expansion and activation to limit primary mammary tumor growth while promoting metastasis. [GRAPHICS
    corecore