180 research outputs found

    Efficient Schemes to Evaluate Transaction Performance in Distributed Database Systems

    Get PDF
    Database designers and researchers often need efficient schemes to evaluate transaction performance. In this paper, we chose two important performance measures: the average number of nodes accessed and the average number of data items accessed per node by a transaction in a distributed database system. We derive analytical expressions to evaluate these metrics. For general applicability, we consider partially replicated distributed database systems. Our first set of analytic results are closed-form expressions for these two measures. These are based on some fairly restrictive simplifying assumptions. When these assumptions are relaxed, no closed-form expressions exist for these averages. Hence, we develop an efficient algorithm to compute these averages

    The proton and deuteron F_2 structure function at low Q^2

    Get PDF
    Measurements of the proton and deuteron F2F_2 structure functions are presented. The data, taken at Jefferson Lab Hall C, span the four-momentum transfer range 0.06<Q2<2.80.06 < Q^2 < 2.8 GeV2^2, and Bjorken xx values from 0.009 to 0.45, thus extending the knowledge of F2F_2 to low values of Q2Q^2 at low xx. Next-to-next-to-leading order calculations using recent parton distribution functions start to deviate from the data for Q2<2Q^2<2 GeV2^2 at the low and high xx-values. Down to the lowest value of Q2Q^2, the structure function is in good agreement with a parameterization of F2F_2 based on data that have been taken at much higher values of Q2Q^2 or much lower values of xx, and which is constrained by data at the photon point. The ratio of the deuteron and proton structure functions at low xx remains well described by a logarithmic dependence on Q2Q^2 at low Q2Q^2.Comment: 3 figures, submitted pape

    Measurements of electron-proton elastic cross sections for 0.4<Q2<5.5(GeV/c)20.4 < Q^2 < 5.5 (GeV/c)^2

    Full text link
    We report on precision measurements of the elastic cross section for electron-proton scattering performed in Hall C at Jefferson Lab. The measurements were made at 28 unique kinematic settings covering a range in momentum transfer of 0.4 << Q2Q^2 << 5.5 (GeV/c)2(\rm GeV/c)^2. These measurements represent a significant contribution to the world's cross section data set in the Q2Q^2 range where a large discrepancy currently exists between the ratio of electric to magnetic proton form factors extracted from previous cross section measurements and that recently measured via polarization transfer in Hall A at Jefferson Lab.Comment: 17 pages, 18 figures; text added, some figures replace

    Scaling of the F_2 structure function in nuclei and quark distributions at x>1

    Full text link
    We present new data on electron scattering from a range of nuclei taken in Hall C at Jefferson Lab. For heavy nuclei, we observe a rapid falloff in the cross section for x>1x>1, which is sensitive to short range contributions to the nuclear wave-function, and in deep inelastic scattering corresponds to probing extremely high momentum quarks. This result agrees with higher energy muon scattering measurements, but is in sharp contrast to neutrino scattering measurements which suggested a dramatic enhancement in the distribution of the `super-fast' quarks probed at x>1. The falloff at x>1 is noticeably stronger in ^2H and ^3He, but nearly identical for all heavier nuclei.Comment: 5 pages, 4 figures, to be submitted to physical revie

    Longitudinal-Transverse Separations of Structure Functions at Low Q2Q^{2} for Hydrogen and Deuterium

    Get PDF
    We report on a study of the longitudinal to transverse cross section ratio, R=σL/σTR=\sigma_L/\sigma_T, at low values of xx and Q2Q^{2}, as determined from inclusive inelastic electron-hydrogen and electron-deuterium scattering data from Jefferson Lab Hall C spanning the four-momentum transfer range 0.06 <Q2<2.8 < Q^{2} < 2.8 GeV2^{2}. Even at the lowest values of Q2Q^{2}, RR remains nearly constant and does not disappear with decreasing Q2Q^{2}, as expected. We find a nearly identical behaviour for hydrogen and deuterium.Comment: 4 pages, 2 gigure

    Study of the A(e,e'Ï€+\pi^+) Reaction on 1^1H, 2^2H, 12^{12}C, 27^{27}Al, 63^{63}Cu and 197^{197}Au

    Full text link
    Cross sections for the p(e,e′π+e,e'\pi^{+})n process on 1^1H, 2^2H, 12^{12}C, 27^{27}Al, 63^{63}Cu and 197^{197}Au targets were measured at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) in order to extract the nuclear transparencies. Data were taken for four-momentum transfers ranging from Q2Q^2=1.1 to 4.8 GeV2^2 for a fixed center of mass energy of WW=2.14 GeV. The ratio of σL\sigma_L and σT\sigma_T was extracted from the measured cross sections for 1^1H, 2^2H, 12^{12}C and 63^{63}Cu targets at Q2Q^2 = 2.15 and 4.0 GeV2^2 allowing for additional studies of the reaction mechanism. The experimental setup and the analysis of the data are described in detail including systematic studies needed to obtain the results. The results for the nuclear transparency and the differential cross sections as a function of the pion momentum at the different values of Q2Q^2 are presented. Global features of the data are discussed and the data are compared with the results of model calculations for the p(e,e′π+e,e'\pi^{+})n reaction from nuclear targets.Comment: 28 pages, 19 figures, submited to PR

    Measurement of Nuclear Transparency for the A(e,e' pi^+) Reaction

    Full text link
    We have measured the nuclear transparency of the A(e,e' pi^+) process in ^{2}H,^{12}C, ^{27}Al, ^{63}Cu and ^{197}Au targets. These measurements were performed at the Jefferson Laboratory over a four momentum transfer squared range Q^2 = 1.1 - 4.7 (GeV/c)^2. The nuclear transparency was extracted as the super-ratio of (σA/σH)(\sigma_A/\sigma_H) from data to a model of pion-electroproduction from nuclei without pi-N final state interactions. The Q^2 and atomic number dependence of the nuclear transparency both show deviations from traditional nuclear physics expectations, and are consistent with calculations that include the quantum chromodynamical phenomenon of color transparency.Comment: 5 pages, 3 figs Changes to figure 2 and 3 (error band updated and theory curves updated
    • …
    corecore