1,901 research outputs found

    Processing and Interconnections of Finely Segmented Semiconductor Pixel Detectors for Applications in Particle Physics and Photon Detection

    Get PDF
    Radiation hardness is in the focus of the development of particle tracking and photon imaging detector installations. Semiconductor detectors, widely used in particle physics experiments, have turned into capacitive-coupled (AC-coupled) detectors from the originally developed conductively coupled (DC-coupled) detectors. This is due to the superior isolation of radiation-induced leakage current in AC-coupled detectors. However, some modern detector systems, such as the tracking detectors in the CERN LHC CMS or ATLAS experiments, are still DC-coupled. This originates from the difficulty of implementing AC coupling on very small pixel detector areas. In this report, we describe our advances in the detector processing technology. The first topic is the applications of the atomic layer deposition processing technology, which enables the very high densities of capacitance and resistance that are needed when the dimensions of the physical segmentation of pixel detectors need to be scaled down. The second topic is the flip-chip/bump-bonding interconnection technology, which is necessary in order to manufacture pixel detector modules on a large scale with a more than 99% yield of noise-free and faultless pixels and detector channels.Peer reviewe

    Two-pion femtoscopy in p-Pb collisions at root(NN)-N-S=5.02 TeV

    Get PDF
    We report the results of the femtoscopic analysis of pairs of identical pions measured in p-Pb collisions at root(NN)-N-S = 5.02 TeV. Femtoscopic radii are determined as a function of event multiplicity and pair momentum in three spatial dimensions. As in the pp collision system, the analysis is complicated by the presence of sizable background correlation structures in addition to the femtoscopic signal. The radii increase with event multiplicity and decrease with pair transverse momentum. When taken at comparable multiplicity, the radii measured in p-Pb collisions, at high multiplicity and low pair transverse momentum, are 10%-20% higher than those observed in pp collisions but below those observed in A-A collisions. The results are compared to hydrodynamic predictions at large event multiplicity as well as discussed in the context of calculations based on gluon saturation.Peer reviewe

    Rapidity and transverse-momentum dependence of the inclusive J/psi nuclear modification factor in p-Pb collisions at root s(NN)=5.02 TeV

    Get PDF
    We have studied the transverse-momentum (p(T)) dependence of the inclusive J/psi production in p-Pb collisions at root s(NN) = 5.02 TeV, in three center-of-mass rapidity (y(cms)) regions, down to zero p(T). Results in the forward and backward rapidity ranges (2.03 <y(cms) <3.53 and -4.46 <y(cms) <-2.96) are obtained by studying the J/psi decay to mu(+)mu(-), while the mid-rapidity region (-1.37 <y(cms) <0.43) is investigated by measuring the e(+)e(-) decay channel. The p(T) dependence of the J/psi production cross section and nuclear modification factor are presented for each of the rapidity intervals, as well as the J/psi mean p(T) values. Forward and mid-rapidity results show a suppression of the J/psi yield, with respect to pp collisions, which decreases with increasing p(T). At backward rapidity no significant J/psi suppression is observed. Theoretical models including a combination of cold nuclear matter effects such as shadowing and partonic energy loss, are in fair agreement with the data, except at forward rapidity and low transverse momentum. The implications of the p-Pb results for the evaluation of cold nuclear matter effects on J/psi production in Pb-Pb collisions are also discussed.Peer reviewe

    Centrality dependence of pion freeze-out radii in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    We report on the measurement of freeze-out radii for pairs of identical-charge pions measured in Pb-Pb collisions at root s(NN) = 2.76 TeV as a function of collision centrality and the average transverse momentum of the pair k(T). Three-dimensional sizes of the system (femtoscopic radii), as well as direction-averaged one-dimensional radii are extracted. The radii decrease with k(T), following a power-law behavior. This is qualitatively consistent with expectations from a collectively expanding system, produced in hydrodynamic calculations. The radii also scale linearly with (1/3). This behavior is compared to world data on femtoscopic radii in heavy-ion collisions. While the dependence is qualitatively similar to results at smaller root s(NN), a decrease in the ratio R-out/R-side is seen, which is in qualitative agreement with a specific prediction from hydrodynamic models: a change from inside-out to outside-in freeze-out configuration. The results provide further evidence for the production of a collective, strongly coupled system in heavy-ion collisions at the CERN Large Hadron Collider.Peer reviewe

    Centrality dependence of inclusive J/psi production in p-Pb collisions at root S-NN=5.02TeV

    Get PDF
    We present a measurement of inclusive J/psi production in p-Pb collisions at root S-NN = 5.02 TeV as a function of the centrality of the collision, as estimated from the energy deposited in the Zero Degree Calorimeters. The measurement is performed with the ALICE detector down to zero transverse momentum, p(T), in the backward (-4.46 <y(cms) <-2.96) and forward (2.03 <y(cms) <3.53) rapidity intervals in the dimuon decay channel and in the mid-rapidity region (-1.37 <y(cms) <0.43) in the dielectron decay channel. The backward and forward rapidity intervals correspond to the Pb-going and p-going direction, respectively. The p(T)-differential J/psi production cross section at backward and forward rapidity is measured for several centrality classes, together with the corresponding average p(T) and p(T)(2) values. The nuclear modification factor is presented as a function of centrality for the three rapidity intervals, and as a function of p(T) for several centrality classes at backward and forward rapidity. At mid-and forward rapidity, the J/psi yield is suppressed up to 40% compared to that in pp interactions scaled by the number of binary collisions. The degree of suppression increases towards central p-Pb collisions at forward rapidity, and with decreasing p(T) of the J/psi. At backward rapidity, the nuclear modification factor is compatible with unity within the total uncertainties, with an increasing trend from peripheral to central p-Pb collisions.Peer reviewe

    Measurement of electrons from beauty-hadron decays in p-Pb collisions at √sNN=5.02 TeV and Pb-Pb collisions at √sNN=2.76 TeV

    Get PDF
    The production of beauty hadrons was measured via semi-leptonic decays at mid-rapidity with the ALICE detector at the LHC in the transverse momentum interval 1 <PT <8 GeV/c in minimum-bias p-Pb collisions at root(NN)-N-S = 5.02 TeV and in 1.3 <PT <8 GeV/c in the 20% most central Pb-Pb collisions at root(NN)-N-S = 2.76 TeV. The pp reference spectra at root s = 5.02 TeV and root s = 2.76 TeV, needed for the calculation of the nuclear modification factors RpPb and R-PbPb, were obtained by a pQCD-driven scaling of the cross section of electrons from beauty-hadron decays measured at root s = 7 TeV. In the PT interval 3 <PT <8 GeV/c, a suppression of the yield of electrons from beauty-hadron decays is observed in Pb-Pb compared to pp collisions. Towards lower PT, the R-PbPb values increase with large systematic uncertainties. The R-ppb is consistent with unity within systematic uncertainties and is well described by theoretical calculations that include cold nuclear matter effects in p-Pb collisions. The measured R-pPb and these calculations indicate that cold nuclear matter effects are small at high transverse momentum also in Pb-Pb collisions. Therefore, the observed reduction of R-PbPb below unity at high PT may be ascribed to an effect of the hot and dense medium formed in Pb-Pb collisions.Peer reviewe

    Inclusive J/psi production at mid-rapidity in pp collisions at root s=5.02 TeV

    Get PDF
    Inclusive J/psi production is studied in minimum-bias proton-proton collisions at a centre-of-mass energy of root s = 5.02 TeV by ALICE at the CERN LHC. The measurement is performed at mid-rapidity (vertical bar y vertical bar and are extracted and compared with results obtained at other collision energies.Peer reviewe

    Production of pi(0) and eta mesons up to high transverse momentum in pp collisions at 2.76 TeV

    Get PDF
    Correction: DOI:10.1140/epjc/s10052-017-5144-7The invariant differential cross sections for inclusive pi(0) and eta mesons at midrapidity were measured in pp collisions at root s = 2.76 TeV for transverse momenta 0.4 <pT <40 GeV/c and 0.6 <pT <20 GeV/c, respectively, using the ALICE detector. This large range in pT was achieved by combining various analysis techniques and different triggers involving the electromagnetic calorimeter (EMCal). In particular, a newsingle-cluster, shower-shape based method was developed for the identification of high-pT neutral pions, which exploits that the showers originating from their decay photons overlap in the EMCal. Above 4 GeV/c, the measured cross sections are found to exhibit a similar power-law behavior with an exponent of about 6.3. Next-to-leading-order perturbative QCD calculations differ from the measured cross sections by about 30% for the pi(0), and between 30-50% for the. meson, while generator-level simulations with PYTHIA 8.2 describe the data to better than 10-30%, except at pT <1 GeV/c. The new data can therefore be used to further improve the theoretical description of pi(0) and eta meson production.Peer reviewe

    Evolution of the longitudinal and azimuthal structure of the near-side jet peak in Pb-Pb collisions at root s(NN)=2.76 TeV

    Get PDF
    In two-particle angular correlation measurements, jets give rise to a near-side peak, formed by particles associated to a higher-p(T) trigger particle. Measurements of these correlations as a function of pseudorapidity (Delta eta) and azimuthal (Delta phi) differences are used to extract the centrality and p(T) dependence of the shape of the near-side peak in the p(T) range 1 <p(T) <8 GeV/c in Pb-Pb and pp collisions at root s(NN) = 2.76 TeV. A combined fit of the near-side peak and long-range correlations is applied to the data and the peak shape is quantified by the variance of the distributions. While the width of the peak in the Delta phi direction is almost independent of centrality, a significant broadening in the Delta eta direction is found from peripheral to central collisions. This feature is prominent for the low-p(T) region and vanishes above 4 GeV/c. The widths measured in peripheral collisions are equal to those in pp collisions in the Delta phi direction and above 3 GeV/c in the Delta eta direction. Furthermore, for the 10% most central collisions and 1 <p(T, assoc) <2 GeV/c, 1 <p(T,trig) <3 GeV/c, a departure from a Gaussian shape is found: a depletion develops around the center of the peak. The results are compared to A Multi-Phase Transport (AMPT) model simulation as well as other theoretical calculations indicating that the broadening and the development of the depletion are connected to the strength of radial and longitudinal flow.Peer reviewe

    W and Z boson production in p-Pb collisions at TeV root s(NN)=5.02 TeV

    Get PDF
    The W and Z boson production was measured via the muonic decay channel in proton-lead collisions at root s(NN) = 5.02 TeV at the Large Hadron Collider with the ALICE detector. The measurement covers backward (4.46 10 GeV/c are determined. The results are compared to theoretical calculations both with and without including the nuclear modification of the parton distribution functions. The W-boson production is also studied as a function of the collision centrality: the cross section of muons from W-boson decays is found to scale with the average number of binary nucleon-nucleon collisions within uncertainties.Peer reviewe
    • …
    corecore