707 research outputs found

    Boundary Inflation and the WMAP Data

    Full text link
    Inflation in a five-dimensional brane world model with two boundary branes is studied. We make use of the moduli space approximation whereby the low energy theory reduces to a four-dimensional biscalar-tensor gravity plus a minimally coupled scalar field. After a detailed analysis of the inflationary solutions, we derive the evolution equations of the linear perturbations separating the adiabatic mode from two entropy modes. We then examine the primordial scalar and tensor power spectra and show that their tilt depends on the scalar-tensor coupling constant. Finally, the induced CMB anisotropies are computed and we present a Monte Carlo Markov Chains exploration of the parameter space using the first year WMAP data. We find a marginalized probability bound for the associated Eddington parameter at the end of inflation 1 - gamma < 0.002, at 95% confidence level. This suggests that future CMB data could provide crucial information helping to distinguish scalar-tensor and standard inflationary scenarios.Comment: 24 pages, 19 figures, uses RevTex. Qualitative discussions added, matches published versio

    The Adiabatic Instability on Cosmology's Dark Side

    Full text link
    We consider theories with a nontrivial coupling between the matter and dark energy sectors. We describe a small scale instability that can occur in such models when the coupling is strong compared to gravity, generalizing and correcting earlier treatments. The instability is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid. Our results are general, and applicable to a wide class of coupled models and provide a powerful, redshift-dependent tool, complementary to other constraints, with which to rule many of them out. A detailed analysis and applications to a range of models are presented in a longer companion paper.Comment: 4 pages, 1 figur

    Gauge-invariant fluctuations of scalar branes

    Get PDF
    A generalization of the Bardeen formalism to the case of warped geometries is presented. The system determining the gauge-invariant fluctuations of the metric induced by the scalar fluctuations of the brane is reduced to a set of Schr\"odinger-like equations for the Bardeen potentials and for the canonical normal modes of the scalar-tensor action. Scalar, vector and tensor modes of the geometry are classified according to four-dimensional Lorentz transformations. While the tensor modes of the geometry live on the brane determining the corrections to Newton law, the scalar and and vector fluctuations exhibit non normalizable zero modes and are, consequently, not localized on the brane. The spectrum of the massive modes of the fluctuations is analyzed using supersymmetric quantum mechanics.Comment: 29 pages in Latex styl

    Phaseless VLBI mapping of compact extragalactic radio sources

    Full text link
    The problem of phaseless aperture synthesis is of current interest in phase-unstable VLBI with a small number of elements when either the use of closure phases is not possible (a two-element interferometer) or their quality and number are not enough for acceptable image reconstruction by standard adaptive calibration methods. Therefore, we discuss the problem of unique image reconstruction only from the spectrum magnitude of a source. We suggest an efficient method for phaseless VLBI mapping of compact extragalactic radio sources. This method is based on the reconstruction of the spectrum magnitude for a source on the entire UV plane from the measured visibility magnitude on a limited set of points and the reconstruction of the sought-for image of the source by Fienup's method from the spectrum magnitude reconstructed at the first stage. We present the results of our mapping of the extragalactic radio source 2200 +420 using astrometric and geodetic observations on a global VLBI array. Particular attention is given to studying the capabilities of a two-element interferometer in connection with the putting into operation of a Russian-made radio interferometer based on Quasar RT-32 radio telescopes.Comment: 21 pages, 6 figure

    Exact anisotropic brane cosmologies

    Get PDF
    We present exact solutions of the gravitational field equations in the generalized Randall-Sundrum model for an anisotropic brane with Bianchi type I and V geometry, with perfect fluid and scalar fields as matter sources. Under the assumption of a conformally flat bulk (with vanishing Weyl tensor) for a cosmological fluid obeying a linear barotropic equation of state the general solution of the field equations can be expressed in an exact parametric form for both Bianchi type I and V space-times. In the limiting case of a stiff cosmological fluid with pressure equal to the energy density, for a Bianchi type I Universe the solution of the field equations are obtained in an exact analytic form. Several classes of scalar field models evolution on the brane are also considered, corresponding to different choices of the scalar field potential. For all models the behavior of the observationally important parameters like shear, anisotropy and deceleration parameter is considered in detail.Comment: revised version to appear in PR

    Large-scale cosmological perturbations on the brane

    Get PDF
    In brane-world cosmologies of Randall-Sundrum type, we show that evolution of large-scale curvature perturbations may be determined on the brane, without solving the bulk perturbation equations. The influence of the bulk gravitational field on the brane is felt through a projected Weyl tensor which behaves effectively like an imperfect radiation fluid with anisotropic stress. We define curvature perturbations on uniform density surfaces for both the matter and Weyl fluids, and show that their evolution on large scales follows directly from the energy conservation equations for each fluid. The total curvature perturbation is not necessarily constant for adiabatic matter perturbations, but can change due to the Weyl entropy perturbation. To relate this curvature perturbation to the longitudinal gauge metric potentials requires knowledge of the Weyl anisotropic stress which is not determined by the equations on the brane. We discuss the implications for large-angle anisotropies on the cosmic microwave background sky.Comment: 13 pages, latex with revtex, no figure

    Mass-Varying Neutrinos from a Variable Cosmological Constant

    Full text link
    We consider, in a completely model-independent way, the transfer of energy between the components of the dark energy sector consisting of the cosmological constant (CC) and that of relic neutrinos. We show that such a cosmological setup may promote neutrinos to mass-varying particles, thus resembling a recently proposed scenario of Fardon, Nelson, and Weiner (FNW), but now without introducing any acceleronlike scalar fields. Although a formal similarity of the FNW scenario with the variable CC one can be easily established, one nevertheless finds different laws for neutrino mass variation in each scenario. We show that as long as the neutrino number density dilutes canonically, only a very slow variation of the neutrino mass is possible. For neutrino masses to vary significantly (as in the FNW scenario), a considerable deviation from the canonical dilution of the neutrino number density is also needed. We note that the present `coincidence' between the dark energy density and the neutrino energy density can be obtained in our scenario even for static neutrino masses.Comment: 8 pages, minor corrections, two references added, to apear in JCA

    A Solution to the Problem of Phaseless Mapping for a High-Orbit Space-Ground Radio Interferometer

    Full text link
    We consider the problem of mapping with ultra-high angular resolution using a space-ground radio interferometer with a space antenna in a high orbit,whose apogee height exceeds the radius of the Earth by a factor of ten. In this case, a multielement interferometer essentially degenerates into a two-element interferometer. The degeneracy of the close-phase relations prevents the use of standard methods for hybrid mapping and self-calibration for the correct reconstruction of images. We propose a new phaseless mapping method based on methods for the reconstruction of images in the complete absence of phase information, using only the amplitudes of the spatial-coherence function of the source. In connection with this problem, we propose a new method for the reliable solution of the phase problem, based on optimizing information-carrying nonlinear functionals, in particular, the Shannon entropy. Results of simulations of mapping radio sources with various structures with ultra-high angular resolution in the framework of the RADIOASTRON mission are presented.Comment: 15 pages, 7 figure

    Affine Constellations Without Mutually Unbiased Counterparts

    Full text link
    It has been conjectured that a complete set of mutually unbiased bases in a space of dimension d exists if and only if there is an affine plane of order d. We introduce affine constellations and compare their existence properties with those of mutually unbiased constellations, mostly in dimension six. The observed discrepancies make a deeper relation between the two existence problems unlikely.Comment: 8 page

    Axisymmetric metrics in arbitrary dimensions

    Full text link
    We consider axially symmetric static metrics in arbitrary dimension, both with and without a cosmological constant. The most obvious such solutions have an SO(n) group of Killing vectors representing the axial symmetry, although one can also consider abelian groups which represent a flat `internal space'. We relate such metrics to lower dimensional dilatonic cosmological metrics with a Liouville potential. We also develop a duality relation between vacuum solutions with internal curvature and those with zero internal curvature but a cosmological constant. This duality relation gives a solution generating technique permitting the mapping of different spacetimes. We give a large class of solutions to the vacuum or cosmological constant spacetimes. We comment on the extension of the C-metric to higher dimensions and provide a novel solution for a braneworld black hole.Comment: 36 pages, LaTeX (JHEP), 4 figures, section added (published version
    • 

    corecore