68 research outputs found
Exotic Differentiable Structures and General Relativity
We review recent developments in differential topology with special concern
for their possible significance to physical theories, especially general
relativity. In particular we are concerned here with the discovery of the
existence of non-standard (``fake'' or ``exotic'') differentiable structures on
topologically simple manifolds such as , \R and
Because of the technical difficulties involved in the smooth case, we begin
with an easily understood toy example looking at the role which the choice of
complex structures plays in the formulation of two-dimensional vacuum
electrostatics. We then briefly review the mathematical formalisms involved
with differentiable structures on topological manifolds, diffeomorphisms and
their significance for physics. We summarize the important work of Milnor,
Freedman, Donaldson, and others in developing exotic differentiable structures
on well known topological manifolds. Finally, we discuss some of the geometric
implications of these results and propose some conjectures on possible physical
implications of these new manifolds which have never before been considered as
physical models.Comment: 11 pages, LaTe
Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications
This work was supported by a restricted research grant of Bayer AG
- …