80 research outputs found

    Uranium Extraction From Laboratory-Synthesized, Uranium-Doped Hydrous Ferric Oxides

    Get PDF
    The extractability of uranium (U) from synthetic uranium-hydrous ferric oxide (HFO) coprecipitates has been shown to decrease as a function of mineral ripening, consistent with the hypothesis that the ripening process will decrease uranium lability. To evaluate this process, three HFO suspensions were coprecipitated with uranyl (UO22+) and maintained at pH 7.0 ± 0.1. Uranyl was added to the HFO post-precipitation in a fourth suspension. Two suspensions also contained either coprecipitated silicate(Si-U-HFO) or phosphate (P-U-HFO).After precipitation of the HFOs, at time intervals of 1 week, 1 month, 6 months, 1 year, and 2 years, aliquots of each suspension were contacted with five extractant solutions for a range of time. Uranium was preferentially extracted over Fe in varying degrees from all coprecipitates, by all extractants. The preference was dependent on the duration of mineral ripening and adjunct anion. Micro-X-ray diffraction analysis provides evidence for the transformation from amorphous material to phases containing substantial proportions of crystalline goethite and hematite, except the P-U-HFO, which remained primarily amorphous. Analysis of the U-HFO coprecipitate by the Mössbauer technique and scanning electron microscopy provides confirmation of an increase in particle size and evidence of mineral ripening to crystalline phases

    The mineralogic transformation of ferrihydrite induced by heterogeneous reaction with bioreduced anthraquinone disulfonate (AQDS) and the role of phosphate

    Get PDF
    Bioreduced anthraquinone-2,6-disulfonate (AH2DS; dihydro-anthraquinone) was reacted with a 2-line, Si-substituted ferrihydrite under anoxic conditions at neutral pH in PIPES buffer. Phosphate (P) and bicarbonate (C); common adsorptive oxyanions and media/buffer components known to effect ferrihydrite mineralization; and Fe(II)aq (as a catalytic mineralization agent) were used in comparative experiments. Heterogeneous AH2DS oxidation coupled with Fe(III) reduction occurred within 0.13–1 day, with mineralogic transformation occurring thereafter. The product suite included lepidocrocite, goethite, and/or magnetite, with proportions varing with reductant:oxidant ratio (r:o) and the presence of P or C. Lepidocrocite was the primary product at low r:o in the absence of P or C, with evidence for multiple formation pathways. Phosphate inhibited reductive recrystallization, while C promoted goethite formation. Stoichiometric magnetite was the sole product at higher r:o in the absence and presence of P. Lepidocrocite was the primary mineralization product in the Fe(II)aq system, with magnetite observed at near equal amounts when Fe(II) was high [Fe(II)/Fe(III)] = 0.5 and P was absent. P had a greater effect on reductive mineralization in the Fe(II)aq system, while AQDS was more effective than Fe(II)aq in promoting magnetite formation. The mineral products of the direct AH2DS-driven reductive reaction are different from those observed in AH2DS-ferrihydite systems with metal reducing bacteria, particularly in presence of P
    • …
    corecore