12,413 research outputs found

    Cofactor regeneration by a soluble pyridine nucleotide transhydrogenase for biological production of hydromorphone

    Get PDF
    We have applied the soluble pyridine nucleotide transhydrogenase of Pseudomonas fluorescens to a cell-free system for the regeneration of the nicotinamide cofactors NAD and NADP in the biological production of the important semisynthetic opiate drug hydromorphone. The original recombinant whole-cell system suffered from cofactor depletion resulting from the action of an NADP(+)-dependent morphine dehydrogenase and an NADH-dependent morphinone reductase. By applying a soluble pyridine nucleotide transhydrogenase, which can transfer reducing equivalents between NAD and NADP, we demonstrate with a cell-free system that efficient cofactor cycling in the presence of catalytic amounts of cofactors occurs, resulting in high yields of hydromorphone. The ratio of morphine dehydrogenase, morphinone reductase, and soluble pyridine nucleotide transhydrogenase is critical for diminishing the production of the unwanted by-product dihydromorphine and for optimum hydromorphone yields. Application of the soluble pyridine nucleotide transhydrogenase to the whole-cell system resulted in an improved biocatalyst with an extended lifetime. These results demonstrate the usefulness of the soluble pyridine nucleotide transhydrogenase and its wider application as a tool in metabolic engineering and biocatalysis

    Sequence and properties of pentaerythritol tetranitrate reductase from Enterobacter cloacae PB2

    Get PDF
    Pentaerythritol tetranitrate reductase, which reductively liberates nitrite from nitrate esters, is related to old yellow enzyme. Pentaerythritol tetranitrate reductase follows a ping-pong mechanism with competitive substrate inhibition by NADPH, is strongly inhibited by steroids, and is capable of reducing the unsaturated bond of 2-cyclohexen-1-one

    A study of handling cytotoxic drugs and risk of birth defects in offspring of female veterinarians

    Get PDF
    We examined the association of occupational exposure to handling cytotoxic drugs at work with risk of birth defects among a cohort of female veterinarians. This study is a follow up survey of 321 female participants (633 pregnancies) who participated in the Health Risks of Australian Veterinarian project. Data on pregnancies and exposure during each pregnancy was obtained by self-administered mailed questionnaire. Female veterinarians handling cytotoxic drugs during their pregnancy had a two-fold increased risk of birth defects in their offspring (RR = 2.08, 95% CI (1.05–4.15)). Results were consistent in subgroup analysis of those who graduated during the period of 1961 to 1980 (RR = 5.04, 95% CI (1.81, 14.03) and in those working specifically in small and large animal practice. There was no increased risk in the subgroup that graduated after 1980. Women with unplanned pregnancies were more likely to handle cytotoxic drugs on a daily basis (RR = 1.86, 95% CI, 1.00–3.48) and had a higher increased risk of birth defects than those who planned their pregnancies in recent graduates and in those who worked specifically in small animal practice (RR = 2.53, 95% CI, 1.18–5.42). This study suggests that the adverse effects of handling cytotoxic drugs in pregnant women may include an increased risk of birth defects. Pregnancy intention status is an important health behavior and should be considered in prenatal programs

    Supersymmetry, quark confinement and the harmonic oscillator

    Full text link
    We study some quantum systems described by noncanonical commutation relations formally expressed as [q,p]=ihbar(I + chi H), where H is the associated (harmonic oscillator-like) Hamiltonian of the system, and chi is a Hermitian (constant) operator, i.e. [H,chi]=0 . In passing, we also consider a simple (chi=0 canonical) model, in the framework of a relativistic Klein-Gordon-like wave equation.Comment: To be published in Journal of Physics A: Mathematical and Theoretical (2007
    corecore