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Pentaerythritol tetranitrate reductase, which reductively liberates nitrite from nitrate esters, is related to old
yellow enzyme. Pentaerythritol tetranitrate reductase follows a ping-pong mechanism with competitive sub-
strate inhibition by NADPH, is strongly inhibited by steroids, and is capable of reducing the unsaturated bond

of 2-cyclohexen-1-one.

We previously reported the isolation of Enterobacter cloacae
PB2 on the basis of its ability to use nitrate esters such as
pentaerythritol tetranitrate (PETN) and glycerol trinitrate
(GTN) as nitrogen sources. E. cloacae PB2 possesses a soluble
PETN reductase capable of reductively liberating nitrite from
nitrate esters with oxidation of NADPH (1) (Fig. 1). PETN
reductase is a monomeric flavoprotein of M, 40 000. Recently,
White et al. (20) reported the isolation of a strain of Agrobac-
terium radiobacter capable of growth with GTN as the sole
nitrogen source and showed that cell extracts from this organ-
ism liberated nitrite from GTN and PETN with oxidation of
NADH, suggesting the activity of a similar enzyme.

Nitrate esters, though produced in large amounts for use as
explosives and vasodilators (13), are rare in nature (7, 12), and
multiply substituted nitrate esters are not known to occur nat-
urally. The origin of enzymes apparently specialized for their
breakdown is therefore of interest. To investigate this ques-
tion, the structural gene encoding PETN reductase, designated
onr (for organic nitrate reductase), was cloned using degener-
ate oligonucleotide probes.

Cloning and sequence analysis of onr. The N-terminal se-
quence of PETN reductase purified from E. cloacae PB2 as
previously described (1) was found to be SAEKLFTPLKV
GAVTAPNRVFMAPLT. On the basis of E. cloacae typical
codon usage, the following oligonucleotide probes were de-
signed, based on residues 2 to 11 and 18 to 26, respectively:
(i) AC-TTT-(G/C)AG-(G/C)GG-(G/C)GT-GAA-(G/C)AG-
TTT-TTC-(G/C)GC; (iii)) GT-(G/C)AG-(G/C)GG-(G/C)GC-
CAT-GAA-(G/C)AC-(G/C)CG-GTT. Southern blots using
standard procedures (15) showed that both probes bound to
the same region of PB2 genomic DNA. A 1,525-bp Ncol-Clal
genomic DNA fragment was cloned in pBluescript SK+ (Strat-
agene) to give pONRI1. Sequencing indicated the presence of
an open reading frame beginning with codons matching the
known N-terminal sequence of PETN reductase. The sequence
of onr and deduced amino acid sequence of PETN reductase
are shown in Fig. 2. The sequence predicts a protein of 364
residues with an M| of 39,358 excluding the N-terminal methi-
onine, consistent with the M, of approximately 40,000 esti-
mated for PETN reductase by sodium dodecyl sulfate-polyac-
rylamide gel electrophoresis (SDS-PAGE) (1). A putative
ribosome-binding site and transcription termination sequence
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were detected. No obvious o’%-like promoter sequence was
present, but three regions between a putative upstream termi-
nation sequence and the ribosome-binding site have significant
homology to Escherichia coli o5-dependent promoters (21).
The deduced amino acid sequence of PETN reductase was
compared to sequences in protein and nucleic acid databases
using the BLAST program of the GCG package (6). The most
similar proteins found were members of the old yellow enzyme
family of a/B-barrel flavoprotein oxidoreductases (17). These
include old yellow enzyme of Saccharomyces carlsbergensis and
Saccharomyces cerevisiae (11, 14, 18), homologs from the yeast
Kluyveromyces lactis (10) and the protozoan Trypanosoma cru-
zii (OWL:U31282), a steroid-binding protein from the yeast
Candida albicans (9), and morphinone reductase from the bac-
terium Pseudomonas putida M10 (4, 5). Expressed sequence
tags from the plants Arabidopsis thaliana, Oryza sativa, and
Brassica campestris suggest the presence of a related enzyme in
plants. The most similar enzyme is morphinone reductase of
Pseudomonas putida M10, the only other known bacterial
member of this subgroup. PETN reductase and morphinone
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FIG. 1. Transformation of PETN by PETN reductase.
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NcoI(-279) possible termination sequence
ccatggataa aggadccagc dgdcgtgattg ccctgttgge tcaggegetg -230
-35
gagagcgggce gcaatgaaaa aacgctctee ttecteceggeg atgcgctcac -180
-10
gcaggcacag gtgctctatt ccctetggtt aggecgccaac ctgcaagcaa -130
-35
aaatgtctcg cagcgccgtg ccgctcgaaa gegcgctgge gcatgtgaaa -80
-10 -35 -10
aactgtatta ccgcgectgg cgtgtageeg gegtttttat ttaccctttt -30
SalI(-25) rbs
actagtcgac tggtctactc aggagccgtt atgtccgetg aaaagetgtt +20

M S A E K L F

taccccactyg aaagtgggtyg ccgttactge cccaaaccge gtgtttatgg +70
T P L K V G AV T A P N R vV F M
EcoRV(106)

ccccacttac ccgtctgege agcatcgage cgggcgatat cccaacgeca +120
A P L T R L R S I E P G D I P T P

ttgatgggtyg agtattaccyg ccagegcgce agcgecgggcce tgattatctce +170
L M G E Y Y R Q R A S A G L I I s

cgaagccacg cagatttctg ctcaggcaaa aggctacgcec ggtgcaccegg +220
E A T Q I s A Q A K G Y A G A P

gtctgcacag cccggaacag atcgccgegt ggaaaaaaat caccgcaggce +270
G L H s P E Q I A A W K K I T A G

gtgcatgectg aagatggececg tattgeggtt cagetgtgge acaccggteg +320
V H A E D G R I A V O L W H T G R

tatctcacac agcagcatcc agcctggegg tcaggcgceg gtttcectgect +370
I S H s s I Q P G G Q A P vV S A

ctgccctgaa cgccaatacc cgcacttcce tgcgecgatga aaacggtaat +420

S A L N A N T R T S L R D E N G N
SalI(430)

gcgatcecgeg tcegacaccac cacgccacge gegetggage tggacgagat +470

A I R v D T T T P R A L E L D E I

J. BACTERIOL.

SmaI(471) SmaI(512)
cccgggtate gtgaatgatt tcegtcaggce cgtcgccaac geccgggaag +520
P G I V N D F R Q A vV A N A R E

BstEII(556)
cgggcettega cetggttgag cttcactcetg cgcacggtta cctgctgecat +570
A G F D L V E L H S A H G Y L L H

cagtteetgt ccccgtette caaccagegt accgaccagt acggeggcag +620
Q F L S P S S N Q R T D Q Y S

cgttgaaaac cgcgegegte tggtgettga agtggtggat getgtetgta +670
V E N R A R L V L E v vV D A V C

atgagtggag cgcagaccgc attggtattce gtgtcteccce gateggtact +720
N E W s D R I G I R V 8§ P I ¢ T
SalI(730)

ttccagaacg tcgacaacgg tccgaacgaa gaagcagacg cgctgtatet +770
F QO N vV D N G P N E E A D A L Y L

gattgaagag ctggcgaaac geggtatcege ctatctgeac atgtccgaga +820
I E E L A K R G I A Y L H M S E

cggacttgge aggeggcaag ccttacagtg aagectteeg tcagaaagtg +870
T D L A G G K P Y S E A F R Q K V

cgcgageget tccacggegt gattatcggg gegggtgegt atacggcaga +920
I I G A G A

R E R F H G V Y T A E
StuIl(945)
aaaagccgag gatttgatcg gtaaaggect gatcgacgec gtggectttg +970
K A E D L I G L I D A vV A

gccgtgacta cattgctaac ccggatctgg ttgcccgttt gcagaaaaaa +1020
G R D Y A N P D L vV A R L Q K K

HindIII(1047)
gccgaactga acccgcagceg tcctgaaage ttctatggeg geggegegga +1070
A E L N P Q R P E S F Y G G G A E

-35 term-
aggttatacc gactaccctt cactgtaatc ccgetttgta cattgatage +1120

G Y T D Y P s L *
ination sequence -10
ggcgaccttt cgccgctata ctaaaacatc gtttctgttc aaaaagataa +1170
rbs

tccattecgac tggttaatga ggaaattatg cgcctacttc acaccatget +1220
M R L L H T M L

ClaI(1246)
gegegttgge gacctgcaac gttccatcega t
R V G DL Q R S I D

FIG. 2. Sequence of onr and deduced amino acid sequence of PETN reductase. Nucleotides are numbered with 1 being the A of the ATG initiating the gene.
Putative ribosome-binding sites (rbs), transcription termination sequences, and the —35 and —10 regions of possible promoters are indicated.

reductase share 53% sequence identity and 71% sequence
similarity as determined by the GAP program of the GCG
package. An alignment of the deduced amino acid sequences
of PETN reductase, morphinone reductase, and old yellow
enzyme is shown in Fig. 3.

The physical properties of PETN reductase are consistent
with a close relationship to the old yellow enzyme family. Like
all of the known members of this group, it is a simple flavopro-
tein with flavin mononucleotide as a prosthetic group, its sub-
unit M, is approximately 40,000, and it is an oxidoreductase
using a reduced pyridine nucleotide cofactor as an electron
donor. However, all of these enzymes are active as homo-
dimers, whereas the elution position of PETN reductase in gel
filtration, as well as its significant passage through ultrafiltra-
tion membranes with a nominal M, cutoff of 10,000 under
high-salt conditions, suggest that PETN reductase is mono-
meric (1). Since PETN reductase is retained by ultrafiltration
membranes under low-salt conditions, it is conceivable that

dimers form under such conditions; this possibility is under
investigation.

The structure of old yellow enzyme has been shown to be an
eight-stranded «/B-barrel (3). The flavin is hydrogen bonded
by side chains from residues T-37, Q-114, R-243, and R-348
(3). All of these residues are conserved in both morphinone
reductase and PETN reductase (Fig. 3). Of the residues which
hydrogen bond with the flavin through the peptide backbone in
old yellow enzyme, G-324 and G-347 are conserved, while
several others are replaced by conservative substitutions such
as glycine to alanine. Residues F-374 and Y-375, which provide
a hydrophobic pocket for the dimethyl-benzene ring of the
flavin, are also conserved, although F-296 is not.

Overexpression and purification of recombinant PETN re-
ductase. The insert of pONR-1 is immediately downstream
of the lac promoter of pBluescript SK+. It was found that
E. coli JM109/pONR-1 grown in a rich medium such as SOB
(15) in the presence of 0.4 mM isopropyl-p-D-thiogalactopyr-
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MorB
Onr
OYE1l

MorB
Onr
OYE1l

1 PDT SFSNPGLFTP LQLGSLSLPN RVIMAPLT.. RSRTPDSVPG 41

1 SAEKLFTP LKVGAVTAPN RVFMAPLTRL RSIEPGDIPT 38

1 SFVKDFKPQ ALGDTNLFKP IKIGNNELLH RAVIPPLTRM RALHPGNIPN 49
SA SB s1

42 R.LOQIYYGQ RA..SAGLII SEATNISPTA RGYVYTPGIW TDAQEAGWKG 88

39 P.LMGEYYRQ RA..SAGLII SEATQISAQA KGYAGAPGLH SPEQIAAWKK 85

50 RDWAVEYYTQ RAQRPGTMII TEGAFISPQA GGYDNAPGVW SEEQMVEWTK 99
H1 s2 H2

NOTES
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MorB 89
Onr 86
OYE1l 100
sS3

MorB
onr
OYELl

138
135
143

HB SD

MorB
Onr
OYELl

187
183
193

HC

237
233
243

MorB
Onr
OYE1l

MorB
Oonr
OYE1l

279
276
293

..... AGGK.
H6
MorB

Onr
OYE1l

324
320
340

S8 HD H8

MorB
Oonr
OYE1l

370 NGHDRLG 376

390 EALKLGWDKK 399

VVEAVHAKGG RIALQLWHVG RVS.HELVQP DGQQPVAPSA LKAEGAECFV
ITAGVHAEDG RIAVQLWHTG RIS.HSSIQP GGQAPVSASA LNANTRTSLR
IFNATHEKKS FVWVOLWVL.G WAAFPDNLAR DGLRYDSASD

ANACLPNQFL ATGTNRRTDQ YGGSIENRAR
AHGYLLHQFL SPSSNQRTDQ YGGSVENRAR LVLEVVDAVC NEWSADRIGI 232
ANGYLLNQFL DPHSNTRTDE YGGSIENRAR FTLEVVDALV EAIGHEKVGL 242

RLTPFLELFG LTDD.EPEAM AF..YLAGEL DRRG..... L AYLHFNEPDW
RVSPIGTFQN VDNGPNEEAD AL..YLIEEL AKRG..... I AYLHMSETDL
RLSPYGVFNS MSGGAETGIV AQYAYVAGEL EKRAKAGKRL AEFVHLVEPRV

137
134
142
HA sC

EFEDGTAGLH PTSTP.RALE TDEIPGIVED YRQAAQRAKR AGFDMVEVHA 186
D.ENGNAIRV DTTTP.RALE LDEIPGIVND FRQAVANARE AGFDLVELHS 182
MDAEQEAKAK KANNPQOHSLT KDEIKQYIKE YVOAAKNSIA AGADGVEIHS 192

H3 sS4

FPLEVVDAVA EVFGPERVGI 236

H4 S5

278
275
292
H5 S6

..... IGGDI TYPEGFREQM RQRFKGGLIY CGNYDAGRAQ ARLDDNTADA 323
PYSEAFRQKV RERFHGVIIG AGAYTAEKAE DLIGKGLIDA 319
TNPFLTEGEG EYEGGSNDFV YSIWKGPVIR AGNFALHP..

.EVVREEVKD 339
s7 H7

....VAFGRP FIANPDLPER FRLGAALNEP DPSTFYGGAE VGYTDYPFLD 369
....VAFGRD YIANPDLVAR LQKKAELNPQ RPESFYGGGA EGYTDYPSL 364
KRTLIGYGRF FISNPDLVDR LEKGLPLNKY DRDTFYQMSA HGYIDYPTYE 389

HE

FIG. 3. Alignment of the deduced amino acid sequences of PETN reductase (Onr), morphinone reductase (MorB), and old yellow enzyme (OYE1). The alignment
was generated by the PILEUP program of the GCG package. Structural elements from OYE1 shown are taken from reference 6. The a-helices and B-strands forming
the eight-stranded o/B-barrel are shown as H1 to H8 and S1 to S8, respectively; extra-barrel helices are shown as HA to HE, and extra-barrel strands are shown as SA

to SD.

anoside (IPTG) expressed high levels of PETN reductase ac-
tivity, suggesting that PETN reductase formed 30 to 50% of
soluble cell protein. Assays of enzyme activity were performed
as described previously (1). In the absence of IPTG, expression
was approximately half of that observed with IPTG, suggesting
that expression is driven both by the lac promoter of the vector
and by a promoter in the insert. Recombinant PETN reductase
was purified by affinity chromatography. Cells from 1 liter of
stationary-phase culture of E. coli JM109/pONR1 grown in
SOB medium were disrupted using a French press, and clari-
fied extract was loaded onto a column with a 5-cm diameter
packed with 70 ml of Mimetic Orange 2 A6XL (Affinity Chro-
matography Ltd., Freeport, Ballasalla, Isle of Man, United
Kingdom) (packed height 3.6 cm) at a flow rate of 4 ml/min.
The column was washed with 300 ml of 10 mM phosphate
buffer, pH 7.0. Bound PETN reductase was then eluted with 60
mM ammonium acetate. The most active fractions, totalling 60
ml, were pooled and freeze-dried. The freeze-dried powder
was stored at —20°C and made up as required in 50 mM
phosphate buffer, pH 7.0. The crude extract contained 2,250 U

of activity at a specific activity of 6.1 U/mg, and the product
contained 1,100 U at 13.6 U/mg, a yield of 49% at a purifica-
tion factor of 2.2. The purified enzyme appeared homogeneous
by SDS-PAGE and comigrated with PETN reductase purified
from E. cloacae PB2. The N-terminal 10 amino acid residues of
the recombinant enzyme were determined and were found to
be identical to those of the enzyme purified from E. cloacae
PB2.

Kinetic mechanism. To investigate the kinetic mechanism of
PETN reductase, activities were measured at various concen-
trations of GTN and NADPH. GTN was used as a substrate
rather than PETN because its greater solubility allows varia-
tion of the substrate concentration over a much wider range.
GTN concentration was varied between 10 and 100 pM and
NADPH concentration was varied between 40 and 150 uM. In
all cases, GTN was added from a 1,000X stock solution in
ethanol. Addition of ethanol at several times this level had no
effect on the observed rate. Apparent V.. and K,,, values were
determined at each NADPH concentration by nonlinear re-
gression using the GraFit software package (8). Figure 4A
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FIG. 4. (A) Double-reciprocal plot showing PETN reductase activity at var-
ious levels of GTN and NADPH. Lines shown were fitted separately to each data
set by nonlinear regression using the GraFit software package (8). Each point
shown is the mean of three independent assays. Error bars indicate one standard
error. Triangles, 40 uM NADPH,; circles, 65 pM NADPH; diamonds, 100 pM
NADPH; squares, 150 .M NADPH. (B and C) Double-reciprocal plots showing
inhibition of PETN reductase activity by testosterone. (B) NADPH concentra-
tion fixed at 100 M and GTN concentration varied between 10 and 100 WM.
Squares, no inhibitor; diamonds, 0.05 wM testosterone; circles, 0.1 uM testos-
terone; triangles, 0.2 uM testosterone. (C) GTN concentration fixed at 100 pM
and NADPH concentration varied between 40 and 150 pM. Squares, no inhib-
itor; diamonds, 0.05 wM testosterone; circles, 0.1 wM testosterone; triangles, 0.2
M testosterone.

J. BACTERIOL.

shows a double-reciprocal plot including the lines fitted by
nonlinear regression. Convergence occurs to the right of the y
axis. This is characteristic of a ping-pong mechanism with com-
petitive inhibition by the fixed substrate, in this case NADPH
(2). In physical terms this implies that NADPH is capable of
binding unproductively to the reduced form of the enzyme.
The general equation for such behavior is

Vil A][B]
[A1[B] + Ke[A](1+[AVKar) + K4[B]

y =

where [A] is the concentration of NADPH, [B] is the concen-
tration of GTN, v is the observed rate, I, is the theoretical
rate at saturating substrate concentrations ignoring substrate
inhibition, K, is the apparent K,, for NADPH at saturating
levels of GTN, Ky is the apparent K,,, for GTN at saturating
levels of NADPH and K, is the dissociation constant for
unproductive binding of NADPH to the reduced form of the
enzyme.

Parameters for this equation were estimated by linear re-
gression analysis of the slopes and intercepts of the lines shown
in Fig. 4A. The following values were obtained: V,,,, = 25.2 =
1.5 U/mg; kepe = 16.6 = 1.0s™ 5 K, = 107 = 10 pM; K =
39.3 = 3.5 uM; and K = 400 £ 58 uM. Errors indicated are
one standard error based on the error of the linear regression.

A partial F-test was performed to determine whether the
substrate inhibition term was statistically significant in describ-
ing the data. The F statistic was calculated as 30.1 with 1
numerator and 68 denominator degrees of freedom. This value
is significant at the 1% level of confidence.

Similar kinetic behavior has been described for morphinone
reductase, in which substrate inhibition was observed at high
levels of NADH, and product inhibition patterns also sug-
gested that the reduced product hydrocodone could bind un-
productively to the reduced form of the enzyme (4, 5).

It has been found that NADP(H) is bound in an unusual
manner in old yellow enzyme, such that the adenine portion is
unbound and binding is primarily due to the nicotinamide ring
and the nicotinamide ribose moiety (3). In this regard it is
interesting that PETN reductase, like old yellow enzyme, is
NADPH-dependent, whereas morphinone reductase, which
shares 53% sequence identity with PETN reductase, is NADH
dependent and does not appear to be significantly active with
NADPH (4). In studies of the crystal structure of old yellow
enzyme, it was necessary to use an NADP analog, since oxi-
dized cofactor does not bind to oxidized enzyme, nor does
reduced cofactor bind to reduced enzyme (3); by contrast, the
reduced forms of both morphinone reductase and PETN re-
ductase appear to show significant binding to the respective
reduced cofactors. Further study of these enzymes may there-
fore cast light upon the unusual mode of cofactor binding in
this growing enzyme family.

Interaction with steroids. Old yellow enzyme, estrogen-
binding protein and, morphinone reductase are all known to
bind steroids and to reduce the double bond of 2-cyclohexen-
1-one (4, 9, 11, 16, 19). Several steroids were tested as inhib-
itors of PETN reductase and were found to be potent inhibi-
tors of GTN reduction. The concentrations of progesterone,
testosterone, and cortisone required to halve the observed rate
at 100 pM GTN and 100 uM NADPH were approximately
0.022, 0.12, and 0.31 uM, respectively.

Inhibition by testosterone was investigated in more detail.
Assays were performed with testosterone concentrations rang-
ing from 0.05 to 0.20 pM, either with NADPH fixed at 100 puM
and GTN varied between 10 puM and 100 pM or with GTN
fixed at 100 wM and NADPH varied between 40 uM and 150
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TABLE 1. Apparent kinetic parameters for substrates

of PETN reductase”
Vmax cal kca /Km
Substrate K, (mM) (Ulmg) (minil) (min"t mM- )
GTN 0.023 = 0.002 12.1 0.5 480 =20 21,000 = 3,000
EGDN? 24+03 9.5+0.5 380 =*20 160 = 30
2-cyclohexen-1-one  0.74 = 0.06 32 *0.1 125=*3 170 + 20

“ Apparent kinetic parameters were measured at 0.1 mM NADPH. Kinetic
parameters were estimated by nonlinear regression using the GraFit software
package (8). Errors shown are one standard error.

PEGDN, ethylene glycol dinitrate.

wM. Apparent V., and K, for each testosterone concentra-
tion were determined by nonlinear regression using the GraFit
software package (8). Double-reciprocal plots showing data
and fitted lines are shown in Fig. 4B and C. Convergence to the
left of the y axis occurs with both GTN and NADPH as varied
substrates, implying that testosterone binds to both the oxi-
dized and the reduced forms of the enzyme. The general equa-
tion describing this behavior is

Vil A][B]
[A][B] + Ky[A](1+[AVK iz +[1V/Kix) + KABI(1+[I]/K0)

where K, is the dissociation constant for the binding of the
inhibitor to the oxidized form of the enzyme, K, is the disso-
ciation constant for the binding of the inhibitor to the reduced
form of the enzyme, and other parameters are as previously
described.

Using the values for V., K,, Kz, and K, determined
previously, K, and K, were estimated from linear slope re-
plots of the lines fitted for each inhibitor concentration. K,
was estimated as 70 = 6 nM and K, was estimated as 136 =
7 nM. Errors indicated are one standard error based on the
error of the linear regression in each case. By contrast, appar-
ent K, values for GTN were in the order of 10 to 30 puM,
depending on the concentration of NADPH.

The «o/B-unsaturated ketones 2-cyclohexen-1-one and co-
deinone were investigated as substrates for PETN reductase.
Activity was detected with 2-cyclohexen-1-one. Apparent ki-
netic parameters measured in the presence of 0.1 mM NADPH
are shown in Table 1, together with the corresponding values
for the known substrates GTN and ethylene glycol dinitrate.
Kinetic parameters for PETN could not be estimated due to its
poor solubility in aqueous solutions (1). No activity was de-
tected with codeinone, the best known substrate for morphi-
none reductase.

The observations that both morphinone reductase and
PETN reductase bind steroids more strongly than their known
substrates and that they are most closely related to eukaryotic
enzymes suggest that they may be descended from a eukaryotic
steroid reductase.

Nucleotide sequence accession number. The nucleotide se-
quence of onr has been submitted to GenBank and has been
assigned the accession number U68759.
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