164 research outputs found

    Alternating Sign Matrices and Hypermatrices, and a Generalization of Latin Square

    Full text link
    An alternating sign matrix, or ASM, is a (0,±1)(0, \pm 1)-matrix where the nonzero entries in each row and column alternate in sign. We generalize this notion to hypermatrices: an n×n×nn\times n\times n hypermatrix A=[aijk]A=[a_{ijk}] is an {\em alternating sign hypermatrix}, or ASHM, if each of its planes, obtained by fixing one of the three indices, is an ASM. Several results concerning ASHMs are shown, such as finding the maximum number of nonzeros of an n×n×nn\times n\times n ASHM, and properties related to Latin squares. Moreover, we investigate completion problems, in which one asks if a subhypermatrix can be completed (extended) into an ASHM. We show several theorems of this type.Comment: 39 page

    Loopy, Hankel, and Combinatorially Skew-Hankel Tournaments

    Full text link
    We investigate tournaments with a specified score vector having additional structure: loopy tournaments in which loops are allowed, Hankel tournaments which are tournaments symmetric about the Hankel diagonal (the anti-diagonal), and combinatorially skew-Hankel tournaments which are skew-symmetric about the Hankel diagonal. In each case, we obtain necessary and sufficient conditions for existence, algorithms for construction, and switches which allow one to move from any tournament of its type to any other, always staying within the defined type

    A generalization of Alternating Sign Matrices

    Full text link
    In alternating sign matrices the first and last nonzero entry in each row and column is specified to be +1. Such matrices always exist. We investigate a generalization by specifying independently the sign of the first and last nonzero entry in each row and column to be either a +1 or a -1. We determine necessary and sufficient conditions for such matrices to exist.Comment: 14 page

    2-MULTIGRAPHS(Algebraic Combinatorial Theory)

    Get PDF

    Preface

    Get PDF
    It has been shown by Freris, Graham and Kumar that clocks in distributed networks cannot be synchronized precisely in the presence of asymmetric time delays even in idealized situations. Motivated by that impossibility result, we test under similar settings the performance of some existing clock synchronization protocols and show that the synchronization errors between neighboring nodes can be bounded within an acceptable level of accuracy that is determined by the degree of asymmetry in time delays. After studying the basic case of synchronizing two clocks in the two-way message passing process, we first analyze the directed ring networks, in which neighboring clocks are likely to experience severe asymmetric time delays. We then discuss connected undirected networks with two-way message passing between each pair of adjacent nodes. In the end, we expand the discussions to networks with directed topologies that are strongly connected
    corecore