51 research outputs found

    Altered effector function of peripheral cytotoxic cells in COPD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is mounting evidence that perforin and granzymes are important mediators in the lung destruction seen in COPD. We investigated the characteristics of the three main perforin and granzyme containing peripheral cells, namely CD8<sup>+ </sup>T lymphocytes, natural killer (NK; CD56<sup>+</sup>CD3<sup>-</sup>) cells and NKT-like (CD56<sup>+</sup>CD3<sup>+</sup>) cells.</p> <p>Methods</p> <p>Peripheral blood mononuclear cells (PBMCs) were isolated and cell numbers and intracellular granzyme B and perforin were analysed by flow cytometry. Immunomagnetically selected CD8+ T lymphocytes, NK (CD56<sup>+</sup>CD3<sup>-</sup>) and NKT-like (CD56<sup>+</sup>CD3<sup>+</sup>) cells were used in an LDH release assay to determine cytotoxicity and cytotoxic mechanisms were investigated by blocking perforin and granzyme B with relevant antibodies.</p> <p>Results</p> <p>The proportion of peripheral blood NKT-like (CD56<sup>+</sup>CD3<sup>+</sup>) cells in smokers with COPD (COPD subjects) was significantly lower (0.6%) than in healthy smokers (smokers) (2.8%, p < 0.001) and non-smoking healthy participants (HNS) (3.3%, p < 0.001). NK (CD56<sup>+</sup>CD3<sup>-</sup>) cells from COPD subjects were significantly less cytotoxic than in smokers (16.8% vs 51.9% specific lysis, p < 0.001) as were NKT-like (CD56<sup>+</sup>CD3<sup>+</sup>) cells (16.7% vs 52.4% specific lysis, p < 0.001). Both cell types had lower proportions expressing both perforin and granzyme B. Blocking the action of perforin and granzyme B reduced the cytotoxic activity of NK (CD56<sup>+</sup>CD3<sup>-</sup>) and NKT-like (CD56<sup>+</sup>CD3<sup>+</sup>) cells from smokers and HNS.</p> <p>Conclusion</p> <p>In this study, we show that the relative numbers of peripheral blood NK (CD56<sup>+</sup>CD3<sup>-</sup>) and NKT-like (CD56<sup>+</sup>CD3<sup>+</sup>) cells in COPD subjects are reduced and that their cytotoxic effector function is defective.</p

    The Analysis of Receptor-binding Cancer Antigen Expressed on SiSo Cells (RCAS1) immunoreactivity within the microenvironment of the ovarian cancer lesion relative to the applied therapeutic strategy

    Get PDF
    RCAS1 is involved in generating the suppressive profile of the tumor microenvironment that helps cancer cells evade immune surveillance. The status of the cells surrounding the cancer nest may affect both the progression of the cancer and the development of metastases. In cases of ovarian cancer, a large number of patients do not respond to the applied therapy. The patient’s response to the applied therapy is directly linked to the status of the tumor microenvironment and the intensity of its suppressive profile. We analyzed the immunoreactivity of RCAS1 on the cells present in the ovarian cancer microenvironment in patients with the disease; these cells included macrophages and carcinoma-associated fibroblasts. Later we analyzed the immunoreactivity levels within these cells, taking into consideration the clinical stage of the cancer and the therapeutic strategy applied, such as the number of chemotherapy regiments, primary cytoreductive surgery, or the presence of advanced ascites. In the patients who did not respond to the therapy we observed significantly higher immunoreactivity levels of RCAS1 within the cancer nest than in those patients who did respond; moreover, in the non-responsive patients we found RCAS1 within both macrophages and carcinoma-associated fibroblasts. RCAS1 staining may provide information about the intensity of the immuno-suppressive microenvironment profile found in cases of ovarian cancer and its intensity may directly relate to the clinical outcome of the disease

    Sequential Metabolism of 7-Dehydrocholesterol to Steroidal 5,7-Dienes in Adrenal Glands and Its Biological Implication in the Skin

    Get PDF
    Since P450scc transforms 7-dehydrocholesterol (7DHC) to 7-dehydropregnenolone (7DHP) in vitro, we investigated sequential 7DHC metabolism by adrenal glands ex vivo. There was a rapid, time- and dose-dependent metabolism of 7DHC by adrenals from rats, pigs, rabbits and dogs with production of more polar 5,7-dienes as detected by RP-HPLC. Based on retention time (RT), UV spectra and mass spectrometry, we identified the major products common to all tested species as 7DHP, 22-hydroxy-7DHC and 20,22-dihydroxy-7DHC. The involvement of P450scc in adrenal metabolic transformation was confirmed by the inhibition of this process by DL-aminoglutethimide. The metabolism of 7DHC with subsequent production of 7DHP was stimulated by forscolin indicating involvement of cAMP dependent pathways. Additional minor products of 7DHC metabolism that were more polar than 7DHP were identified as 17-hydroxy-7DHP (in pig adrenals but not those of rats) and as pregna-4,7-diene-3,20-dione (7-dehydroprogesterone). Both products represented the major identifiable products of 7DHP metabolism in adrenal glands. Studies with purified enzymes show that StAR protein likely transports 7DHC to the inner mitochondrial membrane, that 7DHC can compete effectively with cholesterol for the substrate binding site on P450scc and that the catalytic efficiency of 3βHSD for 7DHP (Vm/Km) is 40% of that for pregnenolone. Skin mitochondria are capable of transforming 7DHC to 7DHP and the 7DHP is metabolized further by skin extracts. Finally, 7DHP, its photoderivative 20-oxopregnacalciferol, and pregnenolone exhibited biological activity in skin cells including inhibition of proliferation of epidermal keratinocytes and melanocytes, and melanoma cells. These findings define a novel steroidogenic pathway: 7DHC→22(OH)7DHC→20,22(OH)27DHC→7DHP, with potential further metabolism of 7DHP mediated by 3βHSD or CYP17, depending on mammalian species. The 5–7 dienal intermediates of the pathway can be a source of biologically active vitamin D3 derivatives after delivery to or production in the skin, an organ intermittently exposed to solar radiation

    Azithromycin increases phagocytosis of apoptotic bronchial epithelial cells by alveolar macrophages

    No full text
    Chronic obstructive pulmonary disease (COPD) is associated with increased apoptosis and defective phagocytosis in the airway. As uncleared cells can undergo secondary necrosis and perpetuate inflammation, strategies to improve clearance would have therapeutic significance. There is evidence that the 15-member macrolide antibiotic azithromycin has anti-inflammatory properties. Its effects may be increased in the lung due to its ability to reach high concentrations in alveolar macrophages (AMs). The present study investigated the effects of low-dose (500 ng·mL-1) azithromycin on the phagocytosis of apoptotic bronchial epithelial cells and neutrophils by AMs. Flow cytometry was applied to measure phagocytosis and receptors involved in AM recognition of apoptotic cells. Cytokines were investigated using cytometric bead array. Baseline phagocytosis was reduced in COPD subjects compared with controls. Azithromycin significantly improved the phagocytosis of epithelial cells or neutrophils by AMs from COPD subjects by 68 and 38%, respectively, often up to levels comparable with controls. The increase in phagocytosis was partially inhibited by phosphatidylserine, implicating the phosphatidylserine pathway in the pro-phagocytic effects of azithromycin. Azithromycin had no effect on other recognition molecules (granulocyte-macrophage colony-stimulating factor, CD44, CD31, CD36, CD91, vß3 integrin). At higher doses, azithromycin decreased levels of pro-inflammatory cytokines. Thus, low-dose azithromycin therapy could provide an adjunct therapeutic option in chronic obstructive pulmonary disease.S. Hodge, G. Hodge, S. Brozyna, H. Jersmann, M. Holmes, and P. N. Reynold

    Chemotactic Mediators of Th1 T-cell Trafficking in Smokers and COPD Patients

    No full text
    © 2009 Informa plcChronic obstructive pulmonary disease (COPD) is smoking-related and associated with increased cytotoxic CD8+ T-cells in the airway. There is a wide range of susceptibility to the damaging effects of cigarette smoke with only a small proportion of smokers progressing to COPD. We have previously reported increased intracellular Th1 cytokines in blood, BAL and intraepithelial CD8+T cells in current and ex-smokers with COPD, whereas healthy smokers showed localized Th1 response in the lung only. We thus hypothesised that Th1-associated chemokines or their receptors on CD8+T-cells may be differentially expressed in the blood of healthy smokers, current smoker COPD subjects and those who had ceased smoking. We investigated chemokines, chemokine receptors and Th1 and cytotoxic T-cell markers in blood and BAL using flow cytometry, ELISA and cytometric bead array. In blood, CXCR3, CCR4, intracellular CCR3 and the Th1 marker 62L-CD45RO+ were increased in both COPD groups and healthy smokers. In contrast, cytotoxic T-cells, ITAC, MIG, IFN-γ and CCR5 were increased in both COPD groups but not smokers. In BAL, the Th1 marker 62L-CD45RO+, CCR5, CXCR3, IFN-γ, RANTES, IL-8, MCP-1, MIG and ITAC were increased in both COPD groups and smokers versus controls. Our findings are consistent with systemic inflammation in COPD associated with an increased influx of cytotoxic and Th1 cells into the airway. The differential expression of specific chemokines and their receptors in blood from COPD subjects and healthy smokers suggests that inclusion of these markers in any panel designed for the non-invasive investigation of smokers with a disposition to COPD would be clinically relevant.Sheree Brozyna, Jessica Ahern, Greg Hodge, Judith Nairn, Mark Holmes, Paul N. Reynolds and Sandra Hodg

    Functional Role of Cyclin-Dependent Kinase 5 in the Regulation of Melanogenesis and Epidermal Structure

    Get PDF
    Abstract The mammalian integumentary system plays important roles in body homeostasis, and dysfunction of melanogenesis or epidermal development may lead to a variety of skin diseases, including melanoma. Skin pigmentation in humans and coat color in fleece-producing animals are regulated by many genes. Among them, microphthalmia-associated transcription factor (MITF) and paired-box 3 (PAX3) are at the top of the cascade and regulate activities of many important melanogenic enzymes. Here, we report for the first time that cyclin-dependent kinase 5 (Cdk5) is an essential regulator of MITF and PAX3. Cdk5 knockdown in mice causes a lightened coat color, a polarized distribution of melanin and hyperproliferation of basal keratinocytes. Reduced expression of Keratin 10 (K10) resulting from Cdk5 knockdown may be responsible for an abnormal epidermal structure. In contrast, overexpression of Cdk5 in sheep (Ovis aries) only produces brown patches on a white background, with no other observable abnormalities. Collectively, our findings show that Cdk5 has an important functional role in the regulation of melanin production and transportation and in normal development of the integumentary system
    corecore