11 research outputs found

    Low extracellular vesicle concentrations predict survival in patients with heart failure

    Get PDF
    BackgroundHeart disease is of worldwide importance due to high morbidity and mortality. Extracellular vesicle (EV) concentration and size represent novel diagnostic and prognostic biomarkers, e.g. in patients with liver cancer, but data on their prognostic relevance in heart disease are lacking. Here, we investigated the role of EV concentration, size and zeta potential in patients with heart disease.MethodsVesicle size distribution, concentration and zeta potential were measured by nanoparticle tracking analysis (NTA) in 28 intensive care unit (ICU) and 20 standard care (SC) patients and 20 healthy controls.ResultsPatients with any disease had a lower zeta potential compared to the healthy controls. Vesicle size (X50) was significantly higher in ICU patients (245 nm) with heart disease as compared to those patients with heart disease receiving standard care (195 nm), or healthy controls (215 nm) (p = 0.001). Notably, EV concentration was lower in ICU patients with heart disease (4.68 × 1010 particles/ml) compared to SC patients with heart disease (7,62 × 1010 particles/ml) and healthy controls (1.50 × 1011 particles/ml) (p = 0.002). Extracellular vesicle concentration is prognostic for overall survival in patients with heart disease. Overall survival is significantly reduced when the vesicle concentration is below 5.55 × 1010 particles/ml. Median overall survival was only 140 days in patients with vesicle concentrations below 5.55 × 1010 particles/ml compared to 211 days in patients with vesicle concentrations above 5.55 × 1010 particles/ml (p = 0.032).SummaryConcentration of EVs is a novel prognostic marker in ICU and SC patients with heart disease

    Low Serum Levels of Soluble Receptor Activator of Nuclear Factor Îş B Ligand (sRANKL) Are Associated with Metabolic Dysregulation and Predict Long-Term Mortality in Critically Ill Patients

    Get PDF
    Soluble receptor activator of nuclear factor Îş B ligand (sRANKL) is a member of the tumor necrosis factor receptor superfamily, and therefore, involved in various inflammatory processes. The role of sRANKL in the course of bone remodeling via activation of osteoclasts as well as chronic disease progression has been described extensively. However, the potential functional importance of sRANKL in critically ill or septic patients remained unknown. Therefore, we measured sRANKL serum concentrations in 303 critically ill patients, including 203 patients with sepsis and 100 with non-sepsis critical illness. Results were compared to 99 healthy controls. Strikingly, in critically ill patients sRANKL serum levels were significantly decreased at intensive care unit (ICU) admission (p = 0.011) without differences between sepsis and non-sepsis patients. Inline, sRANKL was correlated with markers of metabolic dysregulation, such as pre-existing diabetes and various adipokines (e.g., adiponectin, leptin receptor). Importantly, overall mortality of critically ill patients in a three-year follow-up was significantly associated with decreased sRANKL serum concentrations at ICU admission (p = 0.038). Therefore, our study suggests sRANKL as a biomarker in critically ill patients which is associated with poor prognosis and overall survival beyond ICU stay

    Low Myostatin Serum Levels Are Associated with Poor Outcome in Critically Ill Patients

    No full text
    Background: Growth differentiation factor 8, GDF-8 (Myostatin), is a protein released by myocytes inhibiting muscle growth and differentiation. Serum concentrations of Myostatin can predict poor survival in different chronic diseases, but its role in critical illness and sepsis is obscure. Our aim was to investigate Myostatin levels as a potential prognostic biomarker in critically ill patients with sepsis. Methods: We therefore measured Myostatin serum concentrations in 165 critically ill patients (106 with sepsis, 59 without sepsis) upon admission to the medical intensive care unit (ICU), in comparison to 14 healthy controls. Results: Myostatin levels were significantly decreased in ICU patients compared to controls but did not differ in patients with or without sepsis. However, Myostatin concentrations were significantly lower in patients requiring mechanical ventilation and indicated a trend towards dependency of intravenous vasopressors. Interestingly, we observed a negative correlation between Myostatin levels and markers of systemic inflammation. Strikingly, overall survival (OS) was significantly impaired in patients with low Myostatin levels in all critically ill patients. Low Myostatin levels at baseline turned out as an independent prognostic marker for OS in multivariate Cox-regression analysis (HR: 0.433, 95% CI: 0.211–0.889, p = 0.023). Conclusions: In summary, serum Myostatin concentrations are significantly decreased in critically ill patients and associated with disease severity. Low Myostatin levels also identify a subgroup of ICU patients that are more likely to face an unfavorable clinical outcome in terms of OS

    Clusterin Plasma Concentrations Are Decreased in Sepsis and Inversely Correlated with Established Markers of Inflammation

    No full text
    Clusterin is a multifunctional protein that is recognized to mediate cellular stress response associated with organ failure, systemic inflammation, and metabolic alterations. The aim of this study was to determine the value of clusterin as a clinical biomarker in critical ill patients with or without sepsis. We analyzed clusterin plasma concentrations in 200 critically ill patients (133 with sepsis, 67 without sepsis) on admission to the medical intensive care unit (ICU). The results were compared with 66 healthy controls. Clusterin plasma concentration was significantly elevated in critically ill patients compared to healthy subjects. Clusterin levels were significantly higher in non-septic ICU patients than in patients with sepsis. Clusterin correlated inversely with routinely used biomarkers of inflammatory response. Furthermore, clusterin levels were higher in ICU patients with pre-existing obesity and type 2 diabetes. Clusterin was not associated with disease severity, organ failure, or mortality in the ICU. This study highlights significantly elevated clusterin levels in critically ill patients, predominantly in non-sepsis conditions, and associates circulating clusterin to inflammatory and metabolic dysfunctions

    Secreted Frizzled Related Protein 5 (SFRP5) Serum Levels Are Decreased in Critical Illness and Sepsis and Are Associated with Short-Term Mortality

    No full text
    Sepsis is a major health burden with insufficiently understood mechanisms of inflammation and immune paralysis, leading to a life-threatening critical illness. The secreted frizzled related protein 5 (SFRP5) acts as an anti-inflammatory adipokine by antagonizing the Wnt5a pathway. The aim of this study was to elucidate the role of SFRP5 in critical illness and sepsis and to determine its value as a prognostic biomarker for mortality. We analyzed SFRP5 serum concentrations of 223 critically ill patients at admission to a medical intensive care unit (ICU) and compared those to 24 healthy individuals. SFRP5 serum concentrations were significantly decreased in critical illness as compared to healthy controls (24.66 vs. 100 ng/mL, p = 0.029). Even lower serum concentrations were found in septic as compared to nonseptic critically ill patients (19.21 vs. 32.83 ng/mL, p = 0.031). SFRP5 concentrations correlated with liver disease, age, anti-inflammation, and metabolic parameters. Furthermore, patients with sepsis recovered levels of SFRP5 in the first week of ICU treatment. SFRP5 levels at admission predicted short-term mortality in critically ill but not in septic patients. This study points to the role of the anti-inflammatory mediator SFRP5 not only in sepsis but also in nonseptic critically ill patients and associates high levels of SFRP5 to worse outcomes, predominantly in nonseptic critically ill patients

    Soluble Semaphorin 4D Serum Concentrations Are Elevated in Critically Ill Patients with Liver Cirrhosis and Correlate with Aminotransferases

    No full text
    Semaphorin 4D (Sema4D), also known as CD100, is a multifunctional transmembrane protein with immunoregulatory functions. Upon the activation of immune cells, soluble Semaphorin 4D (sSema4D) is proteolytically cleaved from the membrane by metalloproteinases. sSema4D levels are elevated in various (auto-)inflammatory diseases. Our aim was to investigate sSema4D levels in association with sepsis and critical illnesses and to evaluate sSema4D’s potential as a prognostic biomarker. We measured sSema4D levels in 192 patients upon admission to our medical intensive care unit. We found similar levels of sSema4D in 125 patients with sepsis compared to 67 non-septic patients. sSema4D levels correlated with leukocytes but not with other markers of systemic inflammation such as C-reactive protein or procalcitonin. Most interestingly, in a subgroup of patients suffering from pre-existing liver cirrhosis, we observed significantly higher levels of sSema4D. Consistently, sSema4D was also positively correlated with markers of hepatic and cholestatic injury. Our study suggests that sSema4D is not regulated in sepsis compared to other causes of critical illness. However, sSema4D seems to be associated with hepatic injury and inflammation

    Decreased Bone Mineral Density Is a Predictor of Poor Survival in Critically Ill Patients

    No full text
    Alterations in bone mineral density (BMD) have been suggested as independent predictors of survival for several diseases. However, little is known about the role of BMD in the context of critical illness and intensive care medicine. We therefore evaluated the prognostic role of BMD in critically ill patients upon admission to an intensive care unit (ICU). Routine computed tomography (CT) scans of 153 patients were used to assess BMD in the first lumbar vertebra. Results were correlated with clinical data and outcomes. While median BMD was comparable between patients with and without sepsis, BMD was lower in patients with pre-existing arterial hypertension or chronic obstructive pulmonary disease. A low BMD upon ICU admission was significantly associated with impaired short-term ICU survival. Moreover, patients with baseline BMD < 122 HU had significantly impaired overall survival. The prognostic relevance of low BMD was confirmed in uni- and multivariate Cox-regression analyses including several clinicopathological parameters. In the present study, we describe a previously unrecognised association of individual BMD with short- and long-term outcomes in critically ill patients. Due to its easy accessibility in routine CT, BMD provides a novel prognostic tool to guide decision making in critically ill patients

    CT-based determination of excessive visceral adipose tissue is associated with an impaired survival in critically ill patients

    No full text
    Objective Obesity is a negative prognostic factor for various clinical conditions. In this observational cohort study, we evaluated a CT-based assessment of the adipose tissue distribution as a potential non-invasive prognostic parameter in critical illness. Methods Routine CT-scans upon admission to the intensive care unit (ICU) were used to analyze the visceral and subcutaneous adipose tissue areas at the 3(rd) lumbar vertebra in 155 patients. Results were correlated with various prognostic markers and both short-term- and overall survival. Multiple statistical tools were used for data analysis. Results We observed a significantly larger visceral adipose tissue area in septic patients compared to non-sepsis patients. Interestingly, patients requiring mechanical ventilation had a significantly higher amount of visceral adipose tissue correlating with the duration of mechanical ventilation. Moreover, both visceral and subcutaneous adipose tissue area significantly correlated with several laboratory markers. While neither the visceral nor the subcutaneous adipose tissue area was predictive for short-term ICU survival, patients with a visceral adipose tissue area above the optimal cut-off (241.4 cm(2)) had a significantly impaired overall survival compared to patients with a lower visceral adipose tissue area. Conclusions Our study supports a prognostic role of the individual adipose tissue distribution in critically ill patients. However, additional investigations need to confirm our suggestion that routine CT-based assessment of adipose tissue distribution can be used to yield further information on the patients' clinical course. Moreover, future studies should address functional and metabolic analysis of different adipose tissue compartments in critical illness

    JAM-A is a multifaceted regulator in hepatic fibrogenesis, supporting LSEC integrity and stellate cell quiescence

    No full text
    BACKGROUND AND AIMS: Leukocyte infiltration is a hallmark of hepatic inflammation. The Junctional Adhesion Molecule A (JAM-A) is a crucial regulator of leukocyte extravasation and is upregulated in human viral fibrosis. Reduced shear stress within hepatic sinusoids and the specific phenotype of liver sinusoidal endothelial cells (LSEC) cumulate in differing adhesion characteristics during liver fibrosis. The aim of this study was to define the functional role of cell-specific adhesion molecule JAM-A during hepatic fibrogenesis. METHODS: Complete, conditional (intestinal epithelial; endothelial) and bone marrow chimeric Jam-a knockout animals and corresponding C57Bl/6 wild-type animals were treated with carbon tetrachloride (CCl4 , 6 weeks). For functional analyses of JAM-A, comprehensive in vivo studies, co-culture models and flow-based adhesion assays were performed. RESULTS: Complete and bone marrow-derived Jam-a-/- animals showed aggravated fibrosis with increased non-sinusoidal, perivascular accumulation of CD11b+ F4/80+ monocyte-derived macrophages in contrast to wild-type mice. Despite being associated with disturbed epithelial barrier function, an intestinal epithelial Jam-a knockout did not affect fibrogenesis. In endothelial-specific Jam-a-/- animals, liver fibrosis was aggravated alongside sinusoid capillarization and hepatic stellate cell (HSC) activation. HSC activation is induced via Jam-a-/- LSEC-derived secretion of soluble factors. Sinusoid CD31 expression and hedgehog gene signalling were increased, but leukocyte infiltration and adhesion to LSECs remained unaffected. CONCLUSIONS: Our models decipher cell-specific JAM-A to exert crucial functions during hepatic fibrogenesis. JAM-A on bone marrow-derived cells regulates non-sinusoidal vascular immune cell recruitment, while endothelial JAM-A controls liver sinusoid capillarization and HSC quiescence
    corecore