8,453 research outputs found

    Blueprint for fault-tolerant quantum computation with Rydberg atoms

    Get PDF
    We present a blueprint for building a fault-tolerant universal quantum computer with Rydberg atoms. Our scheme, which is based on the surface code, uses individually addressable, optically trapped atoms as qubits and exploits electromagnetically induced transparency to perform the multiqubit gates required for error correction and computation. We discuss the advantages and challenges of using Rydberg atoms to build such a quantum computer, and we perform error correction simulations to obtain an error threshold for our scheme. Our findings suggest that Rydberg atoms are a promising candidate for quantum computation, but gate fidelities need to improve before fault-tolerant universal quantum computation can be achieved

    Quantum Criticality and Incipient Phase Separation in the Thermodynamic Properties of the Hubbard Model

    Full text link
    Transport measurements on the cuprates suggest the presence of a quantum critical point hiding underneath the superconducting dome near optimal hole doping. We provide numerical evidence in support of this scenario via a dynamical cluster quantum Monte Carlo study of the extended two-dimensional Hubbard model. Single particle quantities, such as the spectral function, the quasiparticle weight and the entropy, display a crossover between two distinct ground states: a Fermi liquid at low filling and a non-Fermi liquid with a pseudogap at high filling. Both states are found to cross over to a marginal Fermi-liquid state at higher temperatures. For finite next-nearest-neighbor hopping t' we find a classical critical point at temperature T_c. This classical critical point is found to be associated with a phase separation transition between a compressible Mott gas and an incompressible Mott liquid corresponding to the Fermi liquid and the pseudogap state, respectively. Since the critical temperature T_c extrapolates to zero as t' vanishes, we conclude that a quantum critical point connects the Fermi-liquid to the pseudogap region, and that the marginal-Fermi-liquid behavior in its vicinity is the analogous of the supercritical region in the liquid-gas transition.Comment: 18 pages, 9 figure

    Delocalization power of global unitary operations on quantum information

    Full text link
    We investigate how originally localized two pieces of quantum information represented by a tensor product of two unknown qudit states are delocalized by performing two-qudit global unitary operations. To characterize the delocalization power of global unitary operations on quantum information, we analyze the necessary and sufficient condition to deterministically relocalize one of the two pieces of quantum information to its original Hilbert space by using only LOCC. We prove that this LOCC one-piece relocalization is possible if and only if the global unitary operation is local unitary equivalent to a controlled-unitary operation. The delocalization power and the entangling power characterize different non-local properties of global unitary operations.Comment: 14 pages, 1 figur

    The Co-occurrence of child and intimate partner maltreatment in the family: characteristics of the violent perpetrators

    Get PDF
    This study considers the characteristics associated with mothers and fathers who maltreat their child and each other in comparison to parents who only maltreat their child. One hundred and sixty-two parents who had allegations of child maltreatment made against them were considered. The sample consisted of 43 fathers (Paternal Family—PF) and 23 mothers (Maternal Family—MF) who perpetrated both partner and child maltreatment, together with 23 fathers (Paternal Child—PC) and 26 mothers (Maternal Child—MC) who perpetrated child maltreatment only. In addition, 2 fathers (Paternal Victim—PV) and 23 mothers (Maternal Victim—MV) were victims of intimate partner maltreatment and perpetrators of child maltreatment and 7 fathers (Paternal Non-abusive Carer—PNC) and 15 mothers (Maternal Non-abusive Carer—MNC) did not maltreat the child but lived with an individual who did. Within their family unit, 40.7% of parents perpetrated both intimate partner and child maltreatment. However, fathers were significantly more likely to maltreat both their partner and child than mothers and mothers were significantly more likely to be victims of intimate partner violence than fathers. PF fathers conducted the highest amount of physical and/or sexual child maltreatment while MC and MV mothers perpetrated the highest amount of child neglect. Few significant differences between mothers were found. PF fathers had significantly more factors associated with development of a criminogenic lifestyle than PC fathers. Marked sex differences were demonstrated with PF fathers demonstrating significantly more antisocial characteristics, less mental health problems and fewer feelings of isolation than MF mothers. MC mothers had significantly more childhood abuse, mental health problems, parenting risk factors and were significantly more likely to be biologically related to the child than PC fathers. This study suggests that violent families should be assessed and treated in a holistic manner, considering the effects of partner violence upon all family members, rather than exclusively intervening with the violent man

    Search for β+\beta^+EC and ECEC processes in 112^{112}Sn

    Full text link
    Limits on β+\beta^+EC (here EC denotes electron capture) and ECEC processes in 112^{112}Sn have been obtained using a 380 cm3^3 HPGe detector and an external source consisting of 53.355 g enriched tin (94.32% of 112^{112}Sn). A limit with 90% C.L. on the 112^{112}Sn half-life of 4.7×10204.7\times 10^{20} y for the ECEC(0ν\nu) transition to the 03+0^+_3 excited state in 112^{112}Cd (1871.0 keV) has been established. This transition is discussed in the context of a possible enhancement of the decay rate by several orders of magnitude given that the ECEC(0ν)(0\nu) process is nearly degenerate with an excited state in the daughter nuclide. Prospects for investigating such a process in future experiments are discussed. The limits on other β+\beta^+EC and ECEC processes in 112^{112}Sn were obtained on the level of (0.68.7)×1020(0.6-8.7)\times 10^{20} y at the 90% C.L.Comment: 14 pages, 4 figure

    Non-adaptive Measurement-based Quantum Computation and Multi-party Bell Inequalities

    Full text link
    Quantum correlations exhibit behaviour that cannot be resolved with a local hidden variable picture of the world. In quantum information, they are also used as resources for information processing tasks, such as Measurement-based Quantum Computation (MQC). In MQC, universal quantum computation can be achieved via adaptive measurements on a suitable entangled resource state. In this paper, we look at a version of MQC in which we remove the adaptivity of measurements and aim to understand what computational abilities still remain in the resource. We show that there are explicit connections between this model of computation and the question of non-classicality in quantum correlations. We demonstrate this by focussing on deterministic computation of Boolean functions, in which natural generalisations of the Greenberger-Horne-Zeilinger (GHZ) paradox emerge; we then explore probabilistic computation, via which multipartite Bell Inequalities can be defined. We use this correspondence to define families of multi-party Bell inequalities, which we show to have a number of interesting contrasting properties.Comment: 13 pages, 4 figures, final version accepted for publicatio

    Global and regional effects of the photochemistry of CH_3O_2NO_2: evidence from ARCTAS

    Get PDF
    Using measurements from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) experiment, we show that methyl peroxy nitrate (CH_3O_2NO_2) is present in concentrations of ~5–15 pptv in the springtime arctic upper troposphere. We investigate the regional and global effects of CH_3O_2NO_2 by including its chemistry in the GEOS-Chem 3-D global chemical transport model. We find that at temperatures below 240 K inclusion of CH_3O_2NO_2 chemistry results in decreases of up to ~20 % in NO_x, ~20 % in N_2O_5, ~5 % in HNO3, ~2 % in ozone, and increases in methyl hydrogen peroxide of up to ~14 %. Larger changes are observed in biomass burning plumes lofted to high altitude. Additionally, by sequestering NO_x at low temperatures, CH_3O_2NO_2 decreases the cycling of HO_2 to OH, resulting in a larger upper tropospheric HO_2 to OH ratio. These results may impact some estimates of lightning NO_x sources as well as help explain differences between models and measurements of upper tropospheric composition
    corecore