1,506 research outputs found
W. C. Brown to Dear friend (10 October 1962)
https://egrove.olemiss.edu/mercorr_pro/2101/thumbnail.jp
Specialty steels and hard materials : edited by N.R. Comins and J.B. Clark; published by Pergamon, Oxford and New York, 1983; 482 pp.; price, U.S. $100.00, [UK pound]55.50
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24706/1/0000127.pd
Recommended from our members
Effect of cold work and processing orientation on the SCC behavior of Alloy 600
Cold work accelerates SCC growth rates in Alloy 600. However, the variation in crack growth rates generated from cold worker material has been significant, and the effect has been difficult to quantify. A study was performed in hydrogenated water adjusted to pH 10.2 to systematically evaluate the effect of cold work on Alloy 600 as a function of temperature, amount of cold work, stress intensity factor, and processing orientation. Cold work was introduced into the material by either tensile prestraining or cold rolling plate product. Crack growth rates were determined between 252 and 360 C, stress intensity factors between 21 and 55 MPa{radical}m, and yield strengths between 201 and 827 MPa. The material with the highest yield strength was cold rolled and tested in the longitudinal-transverse (LT) and short-transverse (ST) orientations. Crack growth rates increased with increasing temperature, stress intensity factor, and yield strength. Furthermore, crack growth rates were a strong function of the processing orientation in the cold rolled plate, with growth rates being approximately an order of magnitude greater in the ST orientation compared to the LT orientation. Crack growth rates in the LT orientation were measured between 0.003 and 1.95 {times} 10{sup {minus}9} m/s and between 0.066 and 6.3 {times} 10{sup {minus}9} m/s in the ST orientation. Activation energies were slightly greater in the ST orientation, ranging from 154 to 191 kcal/mole, compared to activation energies between 126 and 157 kJ/mole in the LT orientation. The results of this study demonstrate that although cold work can be used to accelerate SCC, the orientation of crack growth can significantly affect the results, and must be taken into account when analyzing data from cold worked material
Dual antenna coupling manipulation for low SAR smartphone terminals in talk position
A rigorous analysis of the concept of coupling manipulation utilizing two antennas suited to modern smartphone devices in talk position for voice calls is presented. By using the optimum relative phase between the elements, they can substantially reduce the specific absorption rate (SAR) but still maintain efficiency due to the splitting of power between them and by exploiting a suitable level of inter element coupling. The same antenna elements can still be used for multiple input multiple output (MIMO) when not in talk position without heavily degrading their fundamental capacity limit but this is of secondary importance. The concept could be applied to frequency ranges used in mobile communications from 1.8 to 6 GHz where the ground plane has sufficient form factor. Extensive simulations using two planar inverted-F antennas (PIFAs) operating at 2.4 GHz are carried out to demonstrate conceptually how two antennas can be optimized to reduce SAR by over 50% compared to a single antenna element. SAR reduction is maintained regardless of the userâs head composition and how they are handling the device in talk position. Antenna prototypes are measured and compared to verify the capacity when the handset is used away from the body with two MIMO terminal antennas
UK export performance research - review and implications
Previous research on export performance has been criticized for being a mosaic of autonomous endeavours and for a lack of theoretical development. Building upon extant models of export performance, and a review and analysis of research on export performance in the UK for the period 1990-2005, an integrated model of export performance is developed and theoretical explanations of export performance are put forward. It is suggested that a multi-theory approach to explaining export performance is viable. Management and policy implications for the UK emerging from the review and synthesis of the literature and the integrated model are discussed
The anapole moment and nucleon weak interactions
From the recent measurement of parity nonconservation (PNC) in the Cs atom we
have extracted the constant of the nuclear spin dependent electron-nucleon PNC
interaction, ; the anapole moment constant, ; the strength of the PNC proton-nucleus potential, ; the -meson-nucleon interaction constant,
; and the strength of the neutron-nucleus potential, .Comment: Uses RevTex, 12 pages. We have added an explanation of the effect of
finite nuclear siz
New calculations of the PNC Matrix Element for the 0 doublet in N
A new calculation of the predominantly isoscalar PNC matrix element between
the (E 8.7 MeV) states in N has
been carried out in a (0+1+2+3+4) model space with the
Warburton-Brown interaction. The magnitude of the PNC matrix element of 0.22 to
0.34 eV obtained with the DDH PNC interaction is substantially suppressed
compared with previous calculations in smaller model spaces but shows agreement
with the preliminary Seattle experimental data. The calculated sign is opposite
to that obtained experimentally, and the implications of this are discussed.Comment: REVTEX, 28 page
- âŠ