1,213 research outputs found

    Existing opportunities to adapt the Rio Grande/Bravo Basin Water Resources Allocation Framework

    Get PDF
    The study of the Rio Grande/Bravo (RGB) Basin water allocation demonstrates how the United States (U.S.) and Mexico have consolidated a transboundary framework based on water sharing. However, the water supply no longer meets the ever-increasing demand for water or the expectations of different stakeholders. This paper explores opportunities for an enhanced management regime that will address past problems and better examine how to balance demands for a precious resource and environmental needs. Based on an overview of the RGB Basin context and the water allocation framework, as well as a discussion on stakeholders’ ability to achieve solutions, this paper explores three key questions: (1) Does the current binational water allocation framework meet current and future human and environmental needs? (2) How can the U.S.-Mexico water allocation framework be adapted to balance social and environmental water demands so it can support and preserve the RGB Basin ecosystem? (3) What are the main opportunities to be explored for expanding the U.S.-Mexico water resources allocation framework? The U.S.-Mexico water resources framework is subject to broad interpretation and may be adapted to the circumstances taking the fullest advantage of its flexibility. Policy recommendations highlight the existing flexibility of the binational framework, the potential to move forward with an ad hoc institutional arrangement, and the creation of political will to achieve change through stakeholders recommendations

    (Anti-)self-dual homogeneous vacuum gluon field as an origin of confinement and SUL(NF)×SUR(NF)SU_L(N_F)\times SU_R(N_F) symmetry breaking in QCD

    Full text link
    It is shown that an (anti-)self-dual homogeneous vacuum gluon field appears in a natural way within the problem of calculation of the QCD partition function in the form of Euclidean functional integral with periodic boundary conditions. There is no violation of cluster property within this formulation, nor are parity, color and rotational symmetries broken explicitly. The massless limit of the product of the quark masses and condensates, mf⟚ψˉfψf⟩m_f \langle \bar\psi_f \psi_f \rangle, is calculated to all loop orders. This quantity does not vanish and is proportional to the gluon condensate appearing due to the nonzero strength of the vacuum gluon field. We conclude that the gluon condensate can be considered as an order parameter both for confinement and chiral symmetry breaking.Comment: 16 pages, LaTe

    Langevin Simulation of Thermally Activated Magnetization Reversal in Nanoscale Pillars

    Full text link
    Numerical solutions of the Landau-Lifshitz-Gilbert micromagnetic model incorporating thermal fluctuations and dipole-dipole interactions (calculated by the Fast Multipole Method) are presented for systems composed of nanoscale iron pillars of dimension 9 nm x 9 nm x 150 nm. Hysteresis loops generated under sinusoidally varying fields are obtained, while the coercive field is estimated to be 1979 ±\pm 14 Oe using linear field sweeps at T=0 K. Thermal effects are essential to the relaxation of magnetization trapped in a metastable orientation, such as happens after a rapid reversal of an external magnetic field less than the coercive value. The distribution of switching times is compared to a simple analytic theory that describes reversal with nucleation at the ends of the nanomagnets. Results are also presented for arrays of nanomagnets oriented perpendicular to a flat substrate. Even at a separation of 300 nm, where the field from neighboring pillars is only ∌\sim 1 Oe, the interactions have a significant effect on the switching of the magnets.Comment: 19 pages RevTeX, including 12 figures, clarified discussion of numerical technique

    TASI Lectures on the Cosmological Constant

    Full text link
    The energy density of the vacuum, Lambda, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Lambda=0 conflicts with observation. The possibility remains that Lambda is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concrete realization through its landscape of metastable vacua.Comment: 39 pages, 3 figure

    Asymptotically Anti-de Sitter spacetimes and scalar fields with a logarithmic branch

    Full text link
    We consider a self-interacting scalar field whose mass saturates the Breitenlohner-Freedman bound, minimally coupled to Einstein gravity with a negative cosmological constant in D \geq 3 dimensions. It is shown that the asymptotic behavior of the metric has a slower fall-off than that of pure gravity with a localized distribution of matter, due to the back-reaction of the scalar field, which has a logarithmic branch decreasing as r^{-(D-1)/2} ln r for large radius r. We find the asymptotic conditions on the fields which are invariant under the same symmetry group as pure gravity with negative cosmological constant (conformal group in D-1 dimensions). The generators of the asymptotic symmetries are finite even when the logarithmic branch is considered but acquire, however, a contribution from the scalar field.Comment: 7 pages, CECS style, references adde

    Finite gravitational action for higher derivative and stringy gravities

    Get PDF
    We generalize the local surface counterterm prescription suggested in Einstein gravity for higher derivative (HD) and Weyl gravities. Explicitly, the surface counterterm is found for three- and five-dimensional HD gravities. As a result, the gravitational action for asymptotically AdS spaces is finite and gravitational energy-momentum tensor is well-defined. The holographic trace anomaly for d2 and d4 boundary (gauge) QFT dual to above HD gravity is calculated from gravitational energy-momentum tensor. The calculation of AdS black hole mass in HD gravity is presented within above prescrition. The comparison with the standard prescription (using reference spacetime) is done.Comment: LaTeX file, 21 page

    Black hole mass and angular momentum in 2+1 gravity

    Get PDF
    We propose a new definition for the mass and angular momentum of neutral or electrically charged black holes in 2+1 gravity with two Killing vectors. These finite conserved quantities, associated with the SL(2,R) invariance of the reduced mechanical system, are shown to be identical to the quasilocal conserved quantities for an improved gravitational action corresponding to mixed boundary conditions. They obey a general Smarr-like formula and, in all cases investigated, are consistent with the first law of black hole thermodynamics. Our framework is applied to the computation of the mass and angular momentum of black hole solutions to several field-theoretical models.Comment: 23 pages, 3 references added, to be published in Physical Review

    The Fall of Stringy de Sitter

    Full text link
    Kachru, Kallosh, Linde, & Trivedi recently constructed a four-dimensional de Sitter compactification of IIB string theory, which they showed to be metastable in agreement with general arguments about de Sitter spacetimes in quantum gravity. In this paper, we describe how discrete flux choices lead to a closely-spaced set of vacua and explore various decay channels. We find that in many situations NS5-brane meditated decays which exchange NSNS 3-form flux for D3-branes are comparatively very fast.Comment: 35 pp (11 pp appendices), 5 figures, v3. fixed minor typo

    Supersymmetry of the 2+1 black holes

    Full text link
    The supersymmetry properties of the asymptotically anti-de Sitter black holes of Einstein theory in 2+1 dimensions are investigated. It is shown that (i) the zero mass black hole has two exact super- symmetries; (ii) extreme lM=∣J∣lM=|J| black holes with M=Ìž0M \not= 0 have only one; and (iii) generic black holes do not have any. It is also argued that the zero mass hole is the ground state of (1,1)-adS supergravity with periodic (``Ramond") boundary conditions on the spinor fields.Comment: 9 pages LaTeX file, ULB-PMIF-93/0
    • 

    corecore