79,142 research outputs found
On the Canonical Reduction of Spherically Symmetric Gravity
In a thorough paper Kuchar has examined the canonical reduction of the most
general action functional describing the geometrodynamics of the maximally
extended Schwarzschild geometry. This reduction yields the true degrees of
freedom for (vacuum) spherically symmetric general relativity. The essential
technical ingredient in Kuchar's analysis is a canonical transformation to a
certain chart on the gravitational phase space which features the Schwarzschild
mass parameter , expressed in terms of what are essentially
Arnowitt-Deser-Misner variables, as a canonical coordinate. In this paper we
discuss the geometric interpretation of Kuchar's canonical transformation in
terms of the theory of quasilocal energy-momentum in general relativity given
by Brown and York. We find Kuchar's transformation to be a ``sphere-dependent
boost to the rest frame," where the ``rest frame'' is defined by vanishing
quasilocal momentum. Furthermore, our formalism is general enough to cover the
case of (vacuum) two-dimensional dilaton gravity. Therefore, besides reviewing
Kucha\v{r}'s original work for Schwarzschild black holes from the framework of
hyperbolic geometry, we present new results concerning the canonical reduction
of Witten-black-hole geometrodynamics.Comment: Revtex, 35 pages, no figure
Integral Relaxation Time of Single-Domain Ferromagnetic Particles
The integral relaxation time \tau_{int} of thermoactivating noninteracting
single-domain ferromagnetic particles is calculated analytically in the
geometry with a magnetic field H applied parallel to the easy axis. It is shown
that the drastic deviation of \tau_{int}^{-1} from the lowest eigenvalue of the
Fokker-Planck equation \Lambda_1 at low temperatures, starting from some
critical value of H, is the consequence of the depletion of the upper potential
well. In these conditions the integral relaxation time consists of two
competing contributions corresponding to the overbarrier and intrawell
relaxation processes.Comment: 8 pages, 3 figure
Energy of Isolated Systems at Retarded Times as the Null Limit of Quasilocal Energy
We define the energy of a perfectly isolated system at a given retarded time
as the suitable null limit of the quasilocal energy . The result coincides
with the Bondi-Sachs mass. Our is the lapse-unity shift-zero boundary value
of the gravitational Hamiltonian appropriate for the partial system
contained within a finite topologically spherical boundary . Moreover, we show that with an arbitrary lapse and zero shift the same
null limit of the Hamiltonian defines a physically meaningful element in the
space dual to supertranslations. This result is specialized to yield an
expression for the full Bondi-Sachs four-momentum in terms of Hamiltonian
values.Comment: REVTEX, 16 pages, 1 figur
Phase transitions and iron-ordered moment form factor in LaFeAsO
Elastic neutron scattering studies of an optimized LaFeAsO single crystal
reveal that upon cooling, an onset of the tetragonal (T)-to-orthorhombic (O)
structural transition occurs at K, and it exhibits a
sharp transition at K. We argue that in the
temperature range to , T and O structures may
dynamically coexist possibly due to nematic spin correlations recently proposed
for the iron pnictides, and we attribute to the formation of
long-range O domains from the finite local precursors. The antiferromagnetic
structure emerges at K, with the iron moment
direction along the O \emph{a} axis. We extract the iron magnetic form factor
and use the tabulated of Fe, Fe and Fe to
obtain a magnetic moment size of 0.8 at 9.5 K.Comment: 7 pages, 6 figures, 3 table
New variables, the gravitational action, and boosted quasilocal stress-energy-momentum
This paper presents a complete set of quasilocal densities which describe the
stress-energy-momentum content of the gravitational field and which are built
with Ashtekar variables. The densities are defined on a two-surface which
bounds a generic spacelike hypersurface of spacetime. The method used
to derive the set of quasilocal densities is a Hamilton-Jacobi analysis of a
suitable covariant action principle for the Ashtekar variables. As such, the
theory presented here is an Ashtekar-variable reformulation of the metric
theory of quasilocal stress-energy-momentum originally due to Brown and York.
This work also investigates how the quasilocal densities behave under
generalized boosts, i. e. switches of the slice spanning . It is
shown that under such boosts the densities behave in a manner which is similar
to the simple boost law for energy-momentum four-vectors in special relativity.
The developed formalism is used to obtain a collection of two-surface or boost
invariants. With these invariants, one may ``build" several different mass
definitions in general relativity, such as the Hawking expression. Also
discussed in detail in this paper is the canonical action principle as applied
to bounded spacetime regions with ``sharp corners."Comment: Revtex, 41 Pages, 4 figures added. Final version has been revised and
improved quite a bit. To appear in Classical and Quantum Gravit
The effects of the spontaneous presence of a spouse/partner and others on cardiovascular reactions to an acute psychological challenge
The presence of supportive others has been associated with attenuated cardiovascular reactivity in the laboratory. The effects of the presence of a spouse and others in a more naturalistic setting have received little attention. Blood pressure and heart rate reactions to mental stress were recorded at home in 1028 married/partnered individuals. For 112 participants, their spouse/partner was present; for 78, at least one other person was present. Women tested with a spouse/partner present showed lower magnitude systolic blood pressure and heart rate reactivity than those tested without. Individuals tested with at least one nonspousal other present also displayed attenuated reactivity. This extends the results of laboratory studies and indicates that the spontaneous presence of others is associated with a reduction in cardiovascular reactivity in an everyday environment; spouse/partner presence would appear to be especially effective for women.\ud
\u
Branes, AdS gravitons and Virasoro symmetry
We consider travelling waves propagating on the anti-de Sitter (AdS)
background. It is pointed out that for any dimension d, this space of solutions
has a Virasoro symmetry with a non-zero central charge. This result is a
natural generalization to higher dimensions of the three-dimensional
Brown-Henneaux symmetry.Comment: 4 pages REVTe
Multi-Wavelength Properties of the Type IIb SN 2008ax
We present the UV, optical, X-ray, and radio properties of the Type IIb SN
2008ax discovered in NGC 4490. The observations in the UV are one of the
earliest of a Type IIb supernova (SN). On approximately day four after the
explosion, a dramatic upturn in the u and uvw1 (lambda_c = 2600 Angstroms)
light curves occurred after an initial rapid decline which is attributed to
adiabatic cooling after the initial shock breakout. This rapid decline and
upturn is reminiscent of the Type IIb SN 1993J on day six after the explosion.
Optical/near-IR spectra taken around the peak reveal prominent H-alpha, HeI,
and CaII absorption lines. A fading X-ray source is also located at the
position of SN 2008ax, implying an interaction of the SN shock with the
surrounding circumstellar material and a mass-loss rate of the progenitor of
M_dot = (9+/-3)x10^-6 solar masses per year. The unusual time evolution (14
days) of the 6 cm peak radio luminosity provides further evidence that the
mass-loss rate is low. Combining the UV, optical, X-ray, and radio data with
models of helium exploding stars implies the progenitor of SN 2008ax was an
unmixed star in an interacting-binary. Modeling of the SN light curve suggests
a kinetic energy (E_k) of 0.5x10^51 ergs, an ejecta mass (M_ej) of 2.9 solar
masses, and a nickel mass (M_Ni) of 0.06 solar masses.Comment: Accepted to ApJ Letters, 14 pages, 3 figures, 2 table
The effect of 3He impurities on the nonclassical response to oscillation of solid 4He
We have investigated the influence of impurities on the possible supersolid
transition by systematically enriching isotopically-pure 4He (< 1 ppb of 3He)
with 3He. The onset of nonclassical rotational inertia is broadened and shifts
monotonically to higher temperature with increasing 3He concentration,
suggesting that the phenomenon is correlated to the condensation of 3He atoms
onto the dislocation network in solid 4He.Comment: 4 page
Neel to Spin-Glass-like Phase Transition versus Dilution in Geometrically Frustrated ZnCr_{2-2x}Ga_{2x}O_4
ZnCr2O4 undergoes a first order spin-Peierls-like phase transition at 12.5 K
from a cubic spin liquid phase to a tetragonal Neel state. Using powder
diffraction and single crystal polarized neutron scattering, we determined the
complex spin structure of the Neel phase. This phase consisted of several
magnetic domains with different characteristic wave vectors. This indicates
that the tetragonal phase of ZnCr2O4 is very close to a critical point
surrounded by many different Neel states. We have also studied, using elastic
and inelastic neutron scattering techniques, the effect of nonmagnetic dilution
on magnetic correlations in ZnCr_{2-2x}Ga_{2x}O_4 (x=0.05 and 0.3). For x=0.05,
the magnetic correlations do not change qualitatively from those in the pure
material, except that the phase transition becomes second order. For x= 0.3,
the spin-spin correlations become short range. Interestingly, the spatial
correlations of the frozen spins in the x=0.3 material are the same as those of
the fluctuating moments in the pure and the weakly diluted materials
- …