86,369 research outputs found

    Silica grain catalysis of methanol formation

    Get PDF
    The specific catalytic effect of a silica grain on the formation of methanol via the sequential addition of H atoms to CO adsorbed on the surface is investigated. A negatively charged defect on a siliceous edingtonite surface is found to reduce the gas phase barriers for the H + COads and H + H2C=O-ads reactions by 770 and 399 K, respectively, when compared to the same reactions in the gas phase. The catalytic effect of negatively charged surface sites could also be applicable to the hydrogenation of other adsorbed unsaturated species. However, the activation energies on the surface defect are still too large (1150 and 2230 K) for CH3OH to form efficiently at 10-20 K in the interstellar medium via a classical mechanism. It is therefore suggested that quantum mechanical tunnelling through the activation barrier is required for these hydrogen addition reactions to proceed at such temperatures. The calculations show that because the adsorption energies of CO and H2C=O on the negatively charged defect are substantial, CH3OH may form efficiently during the warm-up period in star-forming regions

    Regularized energy-dependent solar flare hard x-ray spectral index

    Full text link
    The deduction from solar flare X-ray photon spectroscopic data of the energy dependent model-independent spectral index is considered as an inverse problem. Using the well developed regularization approach we analyze the energy dependency of spectral index for a high resolution energy spectrum provided by Ramaty High Energy Solar Spectroscopic Imager (RHESSI). The regularization technique produces much smoother derivatives while avoiding additional errors typical of finite differences. It is shown that observations imply a spectral index varying significantly with energy, in a way that also varies with time as the flare progresses. The implications of these findings are discussed in the solar flare context.Comment: 13 pages; 5 figures, Solar Physics in pres

    Boundary States and Black Hole Entropy

    Full text link
    Black hole entropy is derived from a sum over boundary states. The boundary states are labeled by energy and momentum surface densities, and parametrized by the boundary metric. The sum over state labels is expressed as a functional integral with measure determined by the density of states. The sum over metrics is expressed as a functional integral with measure determined by the universal expression for the inverse temperature gradient at the horizon. The analysis applies to any stationary, nonextreme black hole in any theory of gravitational and matter fields.Comment: 4 pages, Revte

    Branching of the Falkner-Skan solutions for λ < 0

    Get PDF
    The Falkner-Skan equation f'" + ff" + λ(1 - f'^2) = 0, f(0) = f'(0) = 0, is discussed for λ < 0. Two types of problems, one with f'(∞) = 1 and another with f'(∞) = -1, are considered. For λ = 0- a close relation between these two types is found. For λ < -1 both types of problem allow multiple solutions which may be distinguished by an integer N denoting the number of zeros of f' - 1. The numerical results indicate that the solution branches with f'(∞) = 1 and those with f'(∞) = -1 tend towards a common limit curve as N increases indefinitely. Finally a periodic solution, existing for λ < -1, is presented.

    Interdigitation between surface-anchored polymer chains and an elastomer : consequences for adhesion promotion

    Full text link
    We study the adhesion between a cross-linked elastomer and a flat solid surface where polymer chains have been end-grafted. To understand the adhesive feature of such a system, one has to study both the origin of the grafted layer interdigitation with the network, and the end-grafted chains extraction out of the elastomer when it comes unstuck from the solid surface. We shall tackle here the first aspect for which we develop a partial interdigitation model that lets us analytically predict a critical surface grafting density σ∗≃P1/10N−3/5\sigma^{*} \simeq P^{{1/10}}N^{-{3/5}} beyond which the layer no longer interdigitates with the elastomer. We then relate this result with recent adhesion measurements

    Molecular weight effects on chain pull-out fracture of reinforced polymeric interfaces

    Full text link
    Using Brownian dynamics, we simulate the fracture of polymer interfaces reinforced by diblock connector chains. We find that for short chains the interface fracture toughness depends linearly on the degree of polymerization NN of the connector chains, while for longer chains the dependence becomes N3/2N^{3/2}. Based on the geometry of initial chain configuration, we propose a scaling argument that accounts for both short and long chain limits and crossover between them.Comment: 5 pages, 3 figure

    The Calculation of Vacuum Properties from the Global Color Symmetry Model

    Get PDF
    A modified method for calculating the non-perturbative quark vacuum condensates from the global color symmetry model is derived. Within this approach it is shown that the vacuum condensates are free of ultraviolet divergence which is different from previous studies. As a special, the two-quark condensate and the mixed quark-gluon condensate are calculated. A comparision with the results of the other nonperturbative QCD approaches is given.Comment: 17 page

    Tunneling Between Two-Dimensional Electron Gases in a Strong Magnetic Field

    Full text link
    We have measured the tunneling between two two-dimensional electron gases at high magnetic fields BB, when the carrier densities of the two electron layers are matched. For filling factors Îœ<1\nu<1, there is a gap in the current-voltage characteristics centered about V=0V=0, followed by a tunneling peak at ∌6\sim 6~mV. Both features have been observed before and have been attributed to electron-electron interactions within a layer. We have measured high field tunneling peak positions and fitted gap parameters that are proportional to BB, and independent of the carrier densities of the two layers. This suggests a different origin for the gap to that proposed by current theories, which predict a B\sqrt{B} dependence.Comment: 9 pages, cond-mat/yymmnn

    Possible Stratification Mechanism in Granular Mixtures

    Full text link
    We propose a mechanism to explain what occurs when a mixture of grains of different sizes and different shapes (i.e. different repose angles) is poured into a quasi-two-dimensional cell. Specifically, we develop a model that displays spontaneous stratification of the large and small grains in alternating layers. We find that the key requirement for stratification is a difference in the repose angles of the two pure species, a prediction confirmed by experimental findings. We also identify a kink mechanism that appears to describe essential aspects of the dynamics of stratification.Comment: 4 pages, 4 figures, http://polymer.bu.edu/~hmakse/Home.htm
    • 

    corecore