8,055 research outputs found

    An Intelligent Fuse-box for use with Renewable Energy Sources integrated within a Domestic Environment

    No full text
    This paper outlines a proposal for an intelligent fuse-box that can replace existing fuse-boxes in a domestic context such that a number of renewable energy sources can easily be integrated into the domestic power supply network, without the necessity for complex islanding and network protection. The approach allows intelligent control of both the generation of power and its supply to single or groups of electrical appliances. Energy storage can be implemented in such a scheme to even out the power supplied and simplify the control scheme required, and environmental monitoring and load analysis can help in automatically controlling the supply and demand profiles for optimum electrical and economic efficiency. Simulations of typical scenarios are carried out to illustrate the concept in operation

    Interannual Variability of Landfast Ice Thickness in the Canadian High Arctic, 1950-89

    Get PDF
    A physical one-dimensional heat transfer model of fast ice growth was used to investigate the interannual variability of maximum fast ice thickness at four sites in the High Arctic over the period 1950-89. The insulating role of snow cover was found to be the most important factor, explaining 30-60% of the variance in maximum ice thickness values. Other snow-related processes such as slushing and density variations were estimated to explain a further 15-30% of the variance. In contrast, annual variation in air temperatures explained less than 4% of the variance in maximum ice thickness. No evidence was found for the systematic ice thinning trend anticipated from greenhouse gas-induced global warming. However, recent ice thinning and thickening trends at two sites (Alert and Resolute) are consistent with changes in the average depth of snow covering the ice and may be explained by changes in cyclone frequencies. A response surface sensitivity analysis following Fowler and de Freitas (1900) indicated the High Arctic landfast ice regime would be more sensitive to air temperature variations under a warmer, snowier environment.Key words: landfast ice, snow, interannual variability, climate change, Canadian High ArcticRÉSUMÉ. On s’est servi d’un modèle physique de transfert unidimensionnel de chaleur de la croissance de la banquise côtière pour étudier la variabilité interannuelle de l’épaisseur maximale de la banquise côtière à quatre stations de l’Arctique septentrional au cours de la période allant de 1950 à 1989. Le rôle d’isolant de la couche de neige s’est révélé le facteur le plus important, répondant pour 30 à 60 p. 100 de l’écart observé dans les épaisseurs maximales de glace. On estime qu’une autre partie (15 à 30 p. 100) de l’écart découle d’autres processus liés à la neige, comme la variation de la densité et la gadoue. En revanche, la variation annuelle des températures de l’air est intervenue pour moins de 4 p. 100 de l’écart observé dans les épaisseurs maximales de la glace. On n’a relevé aucune tendance à l’amincissement systématique de la glace, tendance prévue du fait du réchauffement du globe provoqué par les gaz à effet de serre. Toutefois, les récentes tendances à l’amincissement et à l’épaississement enregistrées à deux stations (Alert et Resolute) sont compatibles avec la hauteur moyenne de la neige qui recouvre la glace. Ce fait tient peut-être à la modification de la fréquence des cyclones. D’après une analyse de la réaction de surface exécutée suivant la méthode de Fowler et de Freitas (1990), le régime de la glace côtière de l’Arctique septentrional est plus sensible à la variation de la température de l'air dans un milieu plus neigeux et plus chaud.Mots clés: banquise côtière, neige, variabilité interannuelle, changement climatique, Arctique septentrional canadie

    Remote sensing of Pacific hurricane and radiometric measurements from foam and slicks

    Get PDF
    There are no author-identified significant results in this report

    Triton's global heat budget

    Get PDF
    Internal heat flow from radioactive decay in Triton's interior along with absorbed thermal energy from Neptune total 5 to 20 percent of the insolation absorbed by Triton, thus comprising a significant fraction of Triton's surface energy balance. These additional energy inputs can raise Triton's surface temperature between approx. 0.5 to 1.5 K above that possible with absorbed sunlight alone, resulting in a factor of approx. 1.5 to 2.5 increase in Triton's basal atmospheric pressure. If Triton's internal heatflow is concentrated in some areas, as is likely, local effects such as enhanced sublimation with subsequent modification of albedo could be quite large. Furthermore, indications of recent albedo change on Triton suggest that Triton's surface temperature and pressure may not now be in steady state, further suggesting that atmospheric pressure on Triton was as much as 10 times higher in the recent past

    Black Hole Pair Creation and the Entropy Factor

    Full text link
    It is shown that in the instanton approximation the rate of creation of black holes is always enhanced by a factor of the exponential of the black hole entropy relative to the rate of creation of compact matter distributions (stars). This result holds for any generally covariant theory of gravitational and matter fields that can be expressed in Hamiltonian form. It generalizes the result obtained previously for the pair creation of magnetically charged black holes by a magnetic field in Einstein--Maxwell theory. The particular example of pair creation of electrically charged black holes by an electric field in Einstein--Maxwell theory is discussed in detail.Comment: (12 pages, ReVTeX) Revised version of "Pair Creation of Electrically Charged Black Holes". New section shows that the BH pair creation rate is enhanced by a factor exp(BHentropy)\exp(BH entropy) for any Hamiltonian gravity + matter theor

    Optimizing the Jiles-Atherton Model of Hysteresis by a genetic algorithm

    No full text
    Modeling magnetic components for simulation in electric circuits requires an accurate model of the hysteresis loop of the core material used. It is important that the parameters extracted for the hysteresis model be optimized across the range of operating conditions that may occur in circuit simulation. This paper shows how to extract optimal parameters for the Jiles-Atherton model of hysteresis by the genetic algorithm approach. It compares performance with the well-known simulated annealing method and demonstrates that improved results may be obtained with the genetic algorithm. It also shows that a combination of the genetic algorithm and the simulated annealing method can provide an even more accurate solution that either method on its own. A statistical analysis shows that the optimization obtained by the genetic algorithm is better on average, not just on a one-off test basis. The paper introduces and applies the concept of simultaneous optimization for major and minor hysteresis loops to ensure accurate model optimization over a wide variety of operating conditions. It proposes a modification to the Jiles-Atherton model to allow improved accuracy in the modeling of the major loop

    A co-ordinated interaction between CTCF and ER in breast cancer cells.

    Get PDF
    BACKGROUND: CCCTC-binding factor (CTCF) is a conserved zinc finger transcription factor that is involved in both intra- and interchromasomal looping. Recent research has shown a role for CTCF in estrogen receptor (ER) biology, at some individual loci, but a multi-context global analysis of CTCF binding and transcription activity is lacking. RESULTS: We now map CTCF binding genome wide in breast cancer cells and find that CTCF binding is unchanged in response to estrogen or tamoxifen treatment. We find a small but reproducible set of CTCF binding events that overlap with both the nuclear receptor, estrogen receptor, and the forkhead protein FOXA1. These overlapping binding events are likely functional as they are biased towards estrogen-regulated genes, compared to regions lacking either CTCF or ER binding. In addition we identify cell-line specific CTCF binding events. These binding events are more likely to be associated with cell-line specific ER binding events and are also more likely to be adjacent to genes that are expressed in that particular cell line. CONCLUSION: The evolving role for CTCF in ER biology is complex, but is likely to be multifunctional and possibly influenced by the specific genomic locus. Our data suggest a positive, pro-transcriptional role for CTCF in ER-mediated gene expression in breast cancer cells. CTCF not only provides boundaries for accessible and 'protected' transcriptional blocks, but may also influence the actual binding of ER to the chromatin, thereby modulating the estrogen-mediated gene expression changes observed in breast cancer cells.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Duality between Electric and Magnetic Black Holes

    Get PDF
    A number of attempts have recently been made to extend the conjectured SS duality of Yang Mills theory to gravity. Central to these speculations has been the belief that electrically and magnetically charged black holes, the solitons of quantum gravity, have identical quantum properties. This is not obvious, because although duality is a symmetry of the classical equations of motion, it changes the sign of the Maxwell action. Nevertheless, we show that the chemical potential and charge projection that one has to introduce for electric but not magnetic black holes exactly compensate for the difference in action in the semi-classical approximation. In particular, we show that the pair production of electric black holes is not a runaway process, as one might think if one just went by the action of the relevant instanton. We also comment on the definition of the entropy in cosmological situations, and show that we need to be more careful when defining the entropy than we are in an asymptotically-flat case.Comment: 23 pages, revtex, no figures. Major revision: two sections on the electric Ernst solution adde

    Wide Attention Is The Way Forward For Transformers?

    Full text link
    The Transformer is an extremely powerful and prominent deep learning architecture. In this work, we challenge the commonly held belief in deep learning that going deeper is better, and show an alternative design approach that is building wider attention Transformers. We demonstrate that wide single layer Transformer models can compete with or outperform deeper ones in a variety of Natural Language Processing (NLP) tasks when both are trained from scratch. The impact of changing the model aspect ratio on Transformers is then studied systematically. This ratio balances the number of layers and the number of attention heads per layer while keeping the total number of attention heads and all other hyperparameters constant. On average, across 4 NLP tasks and 10 attention types, single layer wide models perform 0.3% better than their deep counterparts. We show an in-depth evaluation and demonstrate how wide models require a far smaller memory footprint and can run faster on commodity hardware, in addition, these wider models are also more interpretable. For example, a single layer Transformer on the IMDb byte level text classification has 3.1x faster inference latency on a CPU than its equally accurate deeper counterpart, and is half the size. We therefore put forward wider and shallower models as a viable and desirable alternative for small models on NLP tasks, and as an important area of research for domains beyond this

    The Affordable Care Act and implications for health care services for American Indian and Alaska Native individuals

    Get PDF
    American Indian and Alaska Native (AI/AN) populations report poor physical and mental health outcomes while tribal health providers and the Indian Health Service (IHS) operate in a climate of significant under funding. Understanding how the Patient Protection and Affordable Care Act (ACA) affects Native American tribes and the IHS is critical to addressing the improvement of the overall access, quality, and cost of health care within AI/AN communities. This paper summarizes the ACA provisions that directly and/or indirectly affect the service delivery of health care provided by tribes and the IHS
    corecore