2,046 research outputs found

    Mast Cells are Important Modifiers of Autoimmune Disease: With so Much Evidence, Why is There Still Controversy?

    Get PDF
    There is abundant evidence that mast cells are active participants in events that mediate tissue damage in autoimmune disease. Disease-associated increases in mast cell numbers accompanied by mast cell degranulation and elaboration of numerous mast cell mediators at sites of inflammation are commonly observed in many human autoimmune diseases including multiple sclerosis, rheumatoid arthritis, and bullous pemphigoid. In animal models, treatment with mast cell stabilizing drugs or mast cell ablation can result in diminished disease. A variety of receptors including those engaged by antibody, complement, pathogens, and intrinsic danger signals are implicated in mast cell activation in disease. Similar to their role as first responders in infection settings, mast cells likely orchestrate early recruitment of immune cells, including neutrophils, to the sites of autoimmune destruction. This co-localization promotes cellular crosstalk and activation and results in the amplification of the local inflammatory response thereby promoting and sustaining tissue damage. Despite the evidence, there is still a debate regarding the relative role of mast cells in these processes. However, by definition, mast cells can only act as accessory cells to the self-reactive T and/or antibody driven autoimmune responses. Thus, when evaluating mast cell involvement using existing and somewhat imperfect animal models of disease, their importance is sometimes obscured. However, these potent immune cells are undoubtedly major contributors to autoimmunity and should be considered as important targets for therapeutic disease intervention

    Current State of Preeclampsia Mouse Models: Approaches, Relevance, and Standardization

    Get PDF
    Preeclampsia (PE) is a multisystemic, pregnancy-specific disorder and a leading cause of maternal and fetal death. PE is also associated with an increased risk for chronic morbidities later in life for mother and offspring. Abnormal placentation or placental function has been well-established as central to the genesis of PE; yet much remains to be determined about the factors involved in the development of this condition. Despite decades of investigation and many clinical trials, the only definitive treatment is parturition. To better understand the condition and identify potential targets preclinically, many approaches to simulate PE in mice have been developed and include mixed mouse strain crosses, genetic overexpression and knockout, exogenous agent administration, surgical manipulation, systemic adenoviral infection, and trophoblast-specific gene transfer. These models have been useful to investigate how biological perturbations identified in human PE are involved in the generation of PE-like symptoms and have improved the understanding of the molecular mechanisms underpinning the human condition. However, these approaches were characterized by a wide variety of physiological endpoints, which can make it difficult to compare effects across models and many of these approaches have aspects that lack physiological relevance to this human disorder and may interfere with therapeutic development. This report provides a comprehensive review of mouse models that exhibit PE-like symptoms and a proposed standardization of physiological characteristics for analysis in murine models of PE

    Functional analyses reveal an important role for tyrosine residues in the staphylococcal multidrug efflux protein QacA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The staphylococcal QacA multidrug efflux protein confers resistance to an exceptional number of structurally unrelated antimicrobial compounds. Aromatic amino acid residues have been shown to be highly important for the transport function of several multidrug transporters and are intimately involved in multidrug binding. This study investigated the structural and functional importance of the seven tyrosine residues in QacA by examining the phenotypic effect of incorporating conservative (aromatic) and non-conservative (non-aromatic) substitutions for these residues.</p> <p>Results</p> <p>Determination of the resistance profiles and analysis of drug transport assays revealed that non-conservative substitutions for most tyrosine residues influenced the QacA drug recognition spectrum. However, an aromatic residue at three tyrosine positions, 63, 410 and 429, was of importance for QacA-mediated transport and resistance to the majority of substrates tested.</p> <p>Conclusion</p> <p>A tyrosine or phenylalanine residue at amino acid positions corresponding to 63 of QacA in related drug efflux proteins is found to be highly conserved. Therefore, an aromatic side chain at this position is likely to partake in a function common to these drug transporters, such as proton translocation or essential intramolecular contacts, whereas aromatic residues at the non-conserved 410 and 429 positions are expected to mediate a QacA-specific function, possibly forming or stabilising part of the QacA drug binding region.</p

    Methylation in Tumorigenesis

    Get PDF
    corecore