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1. Introduction

The development, maturation, and maintenance of tissues and organisms are anchored in
distinct programs for protein expression which define the identities and roles of individual
cell lines [1, 2]. These programs are maintained in a heritable state by epigenetic mecha‐
nisms that convey cellular memory [3, 4]. In this way, the global synchronization of patterns
in gene expression broadly dictates developmental consequences [5, 6]. At the foundation of
such gene regulation are coordinated cascades that affect the packaging of DNA into chro‐
matin, thereby establishing the degree of DNA accessibility to transcriptional complexes
[7-10]. These pathways include histone methylation, methylation of transcriptional regula‐
tors, DNA methylation, histone replacement, chromatin remodeling, and other alterations to
histone tails [11-16]. Abnormalities in these epigenetic events are commonly associated with
tumorigenesis and subsequent clinical outcomes [17-23].

From tightly regulated transcription to mitosis, chromatin is an elastic repository of the ge‐
nome [24]. In this state, a chromosome is sequentially condensed through a succession of or‐
ganized compaction while limited regions of DNA are selectively made available to
transcriptional complexes [25, 26]. Hence, chromatin exists in a dynamic state into which ap‐
proximately 2 m of DNA is packaged in the nucleus while maintaining an extraordinary lev‐
el of utility [25, 26]. At its core, chromatin is established in a series of nucleosomes, their
basic structural unit [25, 27], comprised of 146 base pairs of DNA, wrapped 1.7 times around
an octamer of histones and interspersed by regions of roughly 50 base pairs [28]. The key
histones participating in the assembly of a nucleosome include histones H2A, H2B, H3 and
H4. These histones form hetero-dimers resulting in each being twice represented in the nu‐
cleosomal unit [29-31]. Structurally, histones are are highly conserved, including a folded
core followed by an unstructured tail [30, 31]. A globular domain forms the histone core as a
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helix-turn-helix motif, which allows dimerization [31]. In contrast, the tails of histones do
not exist in defined conformations except when attached to their cognate proteins [31].
Within the sequence of histone tail domains is a large representation of conserved amino
acid residues including lysine, arginine, and serine [31, 32]. Under normal conditions, his‐
tone tails have a net basic charge facilitating their interaction with the poly-anionic back‐
bone of DNA, thereby contributing to the stability of nucleosomes [31]. Consequently,
chromatin structure and transcriptional regulation are commonly mediated through post-
translational modifications that impact specific residues within the sequence of these tails
[33, 34]. Modifications to tail residues can regulate the accessibility of nuclear factors to re‐
gions of DNA or induce the recruitment of such factors involved in chromatin structural
and transcriptional regulatory pathways [33, 34].

The Histone-DNA interface is formed principally by inelastic hydrogen bonds between the
phosphate oxygen of DNA and the main chain amide of the histone. Electrostatic interac‐
tions between basic side chains and negatively charged phosphate groups and other nonpo‐
lar interactions further strengthen the association between histones and DNA [35]. While
this, in theory, should facilitate the establishment of nucleosomes upon any DNA sequence,
there are likely specific sequence parameters for nucleosomal placement [36]. The composi‐
tion of the DNA sequences, by which the histone core is enveloped, is likely a major factor
contributing to the positioning of core histones and the dynamic comportment of the nucleo‐
some under the influence of the SWI/SNF ATPase and sequence-specific transcription fac‐
tors [37]. The most broadly characterized nucleosomal assembly is the 30 nm fiber [38],
which is anchored by linker histones [39-41] and the relative juxtaposition of each nucleo‐
some [42], establishing close physical proximity while generating only marginal internucleo‐
somal attraction energy [38, 43-45]. Hence, this architecture allows a great degree of
variation in condensation without producing serious topological changes. Chromatin exists
in a series of more densely compacted structures [46], which are commonly driven by inter‐
action with non-histone, structural proteins [47].

In recent decades, a number of process which impact the structure and/or function of chro‐
matin including post-translational modifications of histones, DNA methylation, incorpora‐
tion of histone variants, and ATP-dependent chromatin remodelling have been the subjects
of intense study. The findings of these studies clearly show that chromatin modifications
and the complexes involved with their facilitation are linked to the control of many biologi‐
cal processes which depend upon the level of chromatin accessibility [48-51]. Such processes
include chromosome segregation during mitosis, X chromosome inactivation, gene expres‐
sion, DNA repair, and chromatin condensation during apoptosis [23, 52-56].

Chromatin modifications convey epigenetic regulation of protein expression without altera‐
tions in DNA sequence. Disturbing the equilibrium of epigenetic networks has been shown
to be associated with numerous pathological events, including syndromes involving chro‐
mosomal instability, neurological disorders, and tumorigenesis [57-59]. Advances in knowl‐
edge related to epigenetic inheritance and chromatin structure/regulation have paved the
way for promising novel therapeutics directed against the specific factors that are responsi‐
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ble [60]. Of particular importance in the role of chromatin modifications in human disease
are methylation of DNA, histone targets, and other regulatory targets.

2. DNA methylation in tumorigenesis

Methylation of DNA is a covalent modification that occurs at cytosines within CpG-rich re‐
gions of DNA and is catalyzed by DNA methyltransferases [61, 62]. The methylation of
DNA affects the binding of proteins to their cognate DNA sequences [61, 63]. Such addition
of methyl groups can prevent the binding of basal transcriptional machinery and ubiquitous
transcription factors [61]. Thus, DNA methylation contributes to epigenetic inheritance, al‐
lele-specific expression, inactivation of the X chromosome, genomic stability and embryonic
development. It is through these pathways that progressive DNA methylation is thought to
be an agent for both normal aging as well as neoplasias [64, 65]. The majority of methylated
CpG islands are located within repetitive elements including centromeric repeats, satellite
sequences and gene repeats. These CpG regions are often found at the 5' end of genes where
DNA methylation affects transcription by recruiting methyl-CpG binding domain (MBD)
proteins that function as adaptors between methylated DNA and chromatin-modifying en‐
zymes [66]. There is a clear relationship between DNA methylation and other silencing
mechanisms including histone modifications and chromatin remodeling [65, 66]. In fact, sev‐
eral studies suggest that DNA methylation affects genes that are already suppressed by oth‐
er mechanisms [65].

Changes in the pattern of DNA methylation have been correlated with altered histone post-
translational modifications and genetic lesions [67]. Either hypermethylation or hypomethy‐
lation have been identified in almost all types of cancer cells examined, to date [18, 21, 68].
Hypomethylation at centromeric repeat sequences has been linked to genomic instability
[18] whereas local hypermethylation of individual genes has been associated with aberrant
gene silencing [21]. In oncogenic cells, hypermethylation is often correlated with the repres‐
sion of tumor suppressor genes while hypomethylation is associated with the activation of
genes required for invasion and metastasis [68, 69]. In neoplastic tissues, the incidence of hy‐
permethylation in genes with promoter associated CpG islands in markedly increased
which, in turn, is associated with repression of tumor suppressors [70]. Although the com‐
plete mechanistic pathway for DNA methylation in cancers is still being determined, aber‐
rant methylation in tumors is already being examined as an instrument for diagnosis [21,
70]. For example, techniques, such as the polymerase chain reaction amplification of bisul‐
fite-modified DNA, have enabled the study of patterns of DNA methylation [71-73]. These
methods are currently being improved and adapted for cancer cell identification, profiling
of tumor-suppressor-gene expression, and prognostic factors that are linked to CpG island
hypermethylation [74]. Likewise, reversal of hypermethylation by several indiscriminant de‐
methylating compounds has been approved for therapeutic intervention associated with
blood-borne cancers [21].

Detection of DNA methylation has recently been added to the armory of preventative/diag‐
nostic medicine for the prevention and treatment of colorectal cancer [75]. This represents
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the most common form of gastrointestinal cancer and is a leading killer among all malignan‐
cies. The colonoscopy is broadly employed for detection of lesions which often give rise to
colorectal tumors. The invasiveness of this procedure and consequent lack of patient cooper‐
ation with recommended colonoscopies is a limiting factor in the efficacy of this procedure
as a preventative. Fortunately, epigenetic screening has arisen as a new tier in preventative
medicine targeting colorectal cancer. Specifically, DNA methylation is associated with gene-
silencing related to onset of colorectal cancer. Given that these changes are detectable prior
to tumorigenesis, target-specific screening of DNA methylation represents a promising front
in the war against colorectal cancer [75].

Similar to colorectal cancer, the role of DNA methylation in prostate cancers has been the
subject of numerous studies [76-78]. Indeed, aberrant hyper/hypo methylation has been
linked in numerous prostate-specific malignant processes ranging from early tumorigenesis
to late stage, androgen independent tumors [79]. The identification of specific targets which
are down-regulated as a result of hypermethylation at their promoters has lead to the devel‐
opment of methylation biomarkers for early detection [80]. These targets of inactivation by
promoter hypermethylation include Ras-association domain family 1A (RASSF1A), GSTP1,
and retinoic acid receptor beta2 (RARbeta2). Though the role of hypomethylation in prostate
cancer is less understood, there are several recent studies which link it to alterations in the
expression of genes associated with early and late stage prostate tumors [81-83].

Additional studies indicate that hyper/hypomethylation of specific promoter regions is asso‐
ciated with tumorigenesis in a broad range of tissues including lung, breast, thyroid, head
and neck squamous cell carcinomas, and hepatocellular carcinomas [84-86]. There are ongo‐
ing studies in dozens of other tissue types indicating a role for hyper/hypomethylation in a
broadening range of cancers. Thus, aberrant alterations in methylation promise to provide a
broad-spectrum mechanism for early detection and prognostication of tumors.

3. Histone methylation in tumorigenesis

Modifications to histone tails comprise the broadest range of variation in epigenetic controls,
encompassing more than four dozen known sites of alteration [87]. Histone proteins are the
targets of many forms of post-translational modification such as citrullination, acetylation,
phosphorylation, SUMOylation, ADP-ribosylation and methylation (Figure 1) [87, 88]. These
alterations are translated into biological consequences by impacting the structure of the nu‐
cleosome as well as facilitating the recruitment of specific regulatory complexes. The combi‐
nation of different histone modifications in concert communicates a "histone code" that is
interpreted in the form of distinct nuclear events [89].

Histone methylation is has been observed to be a mark that imparts long-term epigenetic
memory [90]. Histone lysine methylation is a central factor in such processes as X chromo‐
some inactivation, DNA methylation, transcriptional regulation, and the formation of heter‐
ochromatin [91, 92]. This modification, catalyzed by histone methyltransferases, often
facilitates the regulation of protein expression in a residue-dependent manner [90]. The de‐
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gree of achievable specificity is increased by the breadth of biological outcomes which are
dependent upon whether a residue is mono-, di-, or tri-methylated [93-95]. Likewise, is has
also been widely observed that histone lysine methylation works concomitantly with many
transient histone modifications, thereby further enhancing the degree of information which
can be communicated by this epigenetic modification [15].

Figure 1. Common sites of Histone Methylation

Almost all histone lysine methyltransferases are dependent upon a SET domain for catalyz‐
ing the transfer of methyl groups. The SET domain is present in many proteins that control a
range of biological processes, including several involved in development and proper cell cy‐
cle progression [7, 96]. Promoter associated, residue-specific histone methylation often cor‐
relates with distinct patterns of protein expression [96]. The bulk of known modifications
occur on histone H3 which thereby serves as a central conduit of epigenetic regulation. Ly‐
sine methylation at histone H3, lysine 9 (H3K9), H3K27, and H4K20 is most often associated
with gene silencing, whereas methylation of H3K4, H3K36, or H3K79 is commonly linked to
the activation of transcription [7, 96]. Accumulating evidence points to histone methylation
in the recruitment of chromatin remodeling complexes, such as CHD1, an ATP-dependent
chromatin remodeling factor that binds specifically to methylated the forms of H3K4 [97].
While histone lysine methylation was previously believed to be a permanent mark, a num‐
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ber of enzymes have now been identified that are capable of reversing histone methylation
in a site-specific manner [98-100].

The presence of histone variants creates yet another tier to the potential of epigenetic mecha‐
nisms to communicate cellular information [53]. Variants affect the nucleosomal architecture
as well as the proclivity of local chromatin to be remodeled. Thus, the inclusion of histone
variants may modify nucleosome mobility, stability, and/or potential patterns of histone
modifications. These, in turn, impact higher order structure and downstream events
[101-104]. For example, a specialized H3-like variant CENP-A, replaces H3 in centromeric
nucleosomes to establish a distinct architecture that is essential for proper segregation of the
chromosomes [105]. In recent years, there have been an increasing number of experimental
outcomes emphasizing the biological relevance of histone variants and their central role in
epigenetic control [53].

Regulating the architecture of chromatin involves complex and dynamic mechanisms. The
structure of chromatin is controlled on multiple levels by distinct processes such as nucleo‐
some remodeling, DNA methylation, histone post-translational modifications, incorporation
of histone variants, and non-coding RNA. Aberrant activity within such epigenetic process‐
es is likely to broadly affect protein expression as well as other biological events such as
apoptosis and condensation and segregation of chromosomes.

Tumorigenesis is a graded process through which a succession of genetic aberrations leads
to the progressive transformation of healthy cells. While modifications in genetic sequence
certainly account for many of these aberrations, an increasing number of modifications in
gene expression observed in tumorigenesis have been found to be the result by epigenetic
aberrations. These observations point to the relevance of epigenetic mechanisms in the
maintenance of proper cell function. Aberrant events related to such mechanisms often act
in concert with genetic mutations thereby contributing to the development and progression
of cancer.

Over the last two decades, an increasing number of investigations have highlighted the
aberrant gain or loss of histone methyltransferase activity in carcinogenesis. At one end of
the spectrum, it has been shown that mice which fail to express the H3K9-specific histone
methyltransferase, SUV39H1, are subject to increased incidence of chromosomal instability
and subsequent tumorigenic potential [106]. At the opposite end of the spectrum, it is over-
expression of Smyd3, another histone methyltransferase that is specific for H3K4, that has
been shown to be responsible for unrestrained proliferation of many cancer cells [107]. A
transcription factor binding element polymorphism in the upstream regulatory sequence for
Smyd3 has been associated with an increased risk for cancer [108, 109].

In addition to histone targets, some SET domain-containing methyltransferases have been
shown to methylate other proteins including tumor suppressors. Smyd2, which methylates
H3K36 [6, 110], has also been directly linked to the regulation of p53 [111, 112]. Methylating
lysine 370 of p53, Smyd2 has been shown to inhibit the transcriptional regulatory activity of
p53. Smyd2 regulation of the retinoblastoma tumor suppressor (RB) has also been observed
by its capacity to methylate of RB at K860 [113]. In a second example, Set9, which methylates
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H3K4 [114, 115], has also been linked to the regulation of p53 by its capacity to methylate
that protein at lysine 372 [116, 117]. Methylation of that site stabilizes p53 and limits its lo‐
calization to the nucleus [116].

The broad roles of aberrant lysine methylation in the induction of carcinogenesis have
paved the way for a novel line of cancer therapeutics. [118]. Those therapeutics bank on the
potential to manipulate of the demethylating activity of a host of demethylases. The fact that
many demethylases target highly specific substrates heightens their potential utility as high‐
ly effective therapeutics with lower likelihood of instigating adverse effects.

4. Conclusion

While it is true that chromatin architecture has the capacity to be epigenetically maintained
and inherited via modified states of methylation, recent studies have highlighted the fact
that methylation-induced control of gene expression may be altered by environmental stres‐
sors and toxicants. Such modifications may, in consequence, induce aberrations toward ge‐
nome integrity and stability. Distinct from genetic mutations, these epigenetic aberrations
have been termed epimutations. In contrast to genetic mutations, which may be passively
inherited, epimutations require active maintenance [119]. That epimutations rare appear‐
ance in normal tissues highlights the potential for epigenetic therapies based on high tumor
specificity. Likewise, while therapeutics based on genetic deletions commonly induce an ir‐
reversible loss of gene function, epigenetic alterations are reversible, further enhancing their
potential utility for therapeutic intervention [120]. Reversal of epimutations to restore nor‐
mal expression of tumor suppressors has become the holy grail in epigenetic cancer thera‐
peutics. Already, numerous studies have proven that aberrant gene silencing mediated by
DNA methylation can be easily reversed by the incorporation of DNA methyltransferase in‐
hibitors [121]. Positive results have been observed after treating tumor cells with such phar‐
macological agents [122, 123].

In the last two decades, our knowledge of chromatin methylation patterns and their role in
the regulation of nuclear processes have been broadly elucidated. Understanding those pat‐
terns of histone changes, decoding the association between those alterations and DNA meth‐
ylation, and characterizing their relevance in tumorigenesis comprise the next hurdles in the
etiology of the role of methylation in cancer.
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