30 research outputs found

    Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat

    Get PDF
    The African naked mole-rat’s (Heterocephalus glaber\textit{Heterocephalus glaber}) social and subterranean lifestyle generates a hypoxic niche. Under experimental conditions, naked mole-rats tolerate hours of extreme hypoxia and survive 18 minutes of total oxygen deprivation (anoxia) without apparent injury. During anoxia, the naked mole-rat switches to anaerobic metabolism fueled by fructose, which is actively accumulated and metabolized to lactate in the brain. Global expression of the GLUT5 fructose transporter and high levels of ketohexokinase were identified as molecular signatures of fructose metabolism. Fructose-driven glycolytic respiration in naked mole-rat tissues avoids feedback inhibition of glycolysis via phosphofructokinase, supporting viability. The metabolic rewiring of glycolysis can circumvent the normally lethal effects of oxygen deprivation, a mechanism that could be harnessed to minimize hypoxic damage in human disease.Work was supported aEuropean Research Council (294678), the Deutsche Forschungsgemeinschaft SFB 665 and Go865/9-1, NSF (grant #0744979 ), NIH (grants HL71626 and HL606

    EGF Stimulates ICl<sub>swell</sub> by a Redistribution of Proteins Involved in Cell Volume Regulation

    No full text
    Background: ICln is a multifunctional protein involved in the generation of chloride currents activated during regulatory volume decrease (RVD) after cell swelling (IClswell). Growth factor receptors play a key role in different cellular processes and epidermal growth factor (EGF) regulates swelling-activated chloride permeability. Aim: We set out to investigate if the EGF-induced upregulation of IClswell could be explained by a rearrangement of ICln subcellular distribution and interaction with its molecular partners. Methods: NIH-3T3 fibroblasts were serum-deprived for 24 hours and stimulated with EGF (40 ng/ml) for 30 minutes. IClswell activation, ICln distribution and interaction with its molecular partner HSPC038 were assessed by whole cell patch clamp and fluorescence resonance energy transfer (FRET). Results: EGF treatment significantly enhanced the direct molecular interaction between ICln and HSPC038 and also resulted in an increase of ICln and HSPC038 association with the plasma membrane. Importantly, these events are associated with a significant increase of IClswell. Conclusions: The present data indicate that EGF might exert its role in the modulation of volume-sensitive chloride currents in part through activation and translocation of ICln and HSPC038 to the plasma membrane
    corecore