121 research outputs found

    Genome-wide Association Study Identifies Genetic Variants Associated With Early and Sustained Response to (Pegylated) Interferon in Chronic Hepatitis B Patients: The GIANT-B Study

    Get PDF
    Background. (Pegylated) Interferon ([Peg]IFN) therapy leads to response in a minority of chronic hepatitis B (CHB) patients. Host genetic determinants of response are therefore in demand. Methods. In this genome-wide association study (GWAS), CHB patients, treated with (Peg)IFN for at least 12 weeks ± nucleos(t)ide analogues within randomized trials or as standard of care, were recruited at 21 centers from Europe, Asia, and North America. Response at 24 weeks after (Peg)IFN treatment was defined as combined hepatitis B e antigen (HBeAg) loss with hepatitis B virus (HBV) DNA <2000 IU/mL, or an HBV DNA <2000 IU/mL for HBeAg-negative patients. Results. Of 1144 patients, 1058 (92%) patients were included in the GWAS analysis. In total, 282 (31%) patients achieved the response and 4% hepatitis B surface antigen (HBsAg) loss. GWAS analysis stratified by HBeAg status, adjusted for age, sex, and the 4 ancestry components identified PRELID2 rs371991 (B= −0.74, standard error [SE] = 0.16, P = 3.44 ×10–6) for HBeAg-positive patients. Importantly, PRELID2 was cross-validated for long-term response in HBeAg-negative patients. G3BP2 rs3821977 (B = 1.13, SE = 0.24, P = 2.46 × 10–6) was associated with response in HBeAg-negative patients. G3BP2 has a role in the interferon pathway and was further examined in peripheral blood mononuclear cells of healthy controls stimulated with IFNα and TLR8. After stimulation, less production of IP-10 and interleukin (IL)-10 proteins and more production of IL-8 were observed with the G3BP2 G-allele. Conclusions. Although no genome-wide significant hits were found, the current GWAS identified genetic variants associated with (Peg)IFN response in CHB. The current findings could pave the way for gene polymorphism-guided clinical counseling, both in the setting of (Peg)IFN and the natural history, and possibly for new immune-modulating therapies

    The periodontium of periodontitis patients contains citrullinated proteins which may play a role in ACPA (anti-citrullinated protein antibody) formation

    Get PDF
    Aim To determine the presence and location (stroma versus epithelium) of citrullinated proteins in periodontitis tissue as compared to non-periodontitis tissue and synovial tissue of RA patients. Materials & Methods Periodontitis, healthy periodontal and RA-affected synovial tissue samples were collected in addition to buccal swabs. These samples were stained for the presence of citrullinated proteins using polyclonal (Ab5612) and monoclonal (F95) antibodies. Furthermore, Western blotting with F95 was performed on lysates prepared from periodontal and synovial tissues. Results In periodontitis stroma, increased citrullinated protein presence (80%) was observed compared with control stroma (33%), the latter was associated with inflammation of non-periodontitis origin. Periodontal epithelium always stained positive for Ab5612. Noteworthy, only periodontitis-affected epithelium stained positive for F95. All buccal mucosal swabs and 3 of 4 synovial tissue samples stained positive for both Ab5612 and F95. Western blotting with F95 showed presence of similar citrullinated proteins in both periodontitis and RA-affected synovial tissue. Conclusion Within the periodontal stroma, citrullination is an inflammation-depended process. In periodontal epithelium, citrullination is a physiological process. Additional citrullinated proteins are formed in periodontitis, apparently similar to those formed in RA-affected synovial tissue. Periodontitis induced citrullination may play a role in the aetiology of rheumatoid arthritis

    Physiological-based cord clamping in very preterm infants:the Aeration, Breathing, Clamping 3 (ABC3) trial—statistical analysis plan for a multicenter randomized controlled trial

    Get PDF
    Background: Mortality, cerebral injury, and necrotizing enterocolitis (NEC) are common complications of very preterm birth. An important risk factor for these complications is hemodynamic instability. Pre-clinical studies suggest that the timing of umbilical cord clamping affects hemodynamic stability during transition. Standard care is time-based cord clamping (TBCC), with clamping irrespective of lung aeration. It is unknown whether delaying cord clamping until lung aeration and ventilation have been established (physiological-based cord clamping, PBCC) is more beneficial. This document describes the statistical analyses for the ABC3 trial, which aims to assess the efficacy and safety of PBCC, compared to TBCC. Methods: The ABC3 trial is a multicenter, randomized trial investigating PBCC (intervention) versus TBCC (control) in very preterm infants. The trial is ethically approved. Preterm infants born before 30 weeks of gestation are randomized after parental informed consent. The primary outcome is intact survival, defined as the composite of survival without major cerebral injury and/or NEC. Secondary short-term outcomes are co-morbidities and adverse events assessed during NICU admission, parental reported outcomes, and long-term neurodevelopmental outcomes assessed at a corrected age of 2 years. To test the hypothesis that PBCC increases intact survival, a logistic regression model will be estimated using generalized estimating equations (accounting for correlation between siblings and observations in the same center) with treatment and gestational age as predictors. This plan is written and submitted without knowledge of the data. Discussion: The findings of this trial will provide evidence for future clinical guidelines on optimal cord clamping management at birth. Trial registration: ClinicalTrials.gov NCT03808051. Registered on 17 January 2019.</p

    Autosomal Recessive Dilated Cardiomyopathy due to DOLK Mutations Results from Abnormal Dystroglycan O-Mannosylation

    Get PDF
    Genetic causes for autosomal recessive forms of dilated cardiomyopathy (DCM) are only rarely identified, although they are thought to contribute considerably to sudden cardiac death and heart failure, especially in young children. Here, we describe 11 young patients (5–13 years) with a predominant presentation of dilated cardiomyopathy (DCM). Metabolic investigations showed deficient protein N-glycosylation, leading to a diagnosis of Congenital Disorders of Glycosylation (CDG). Homozygosity mapping in the consanguineous families showed a locus with two known genes in the N-glycosylation pathway. In all individuals, pathogenic mutations were identified in DOLK, encoding the dolichol kinase responsible for formation of dolichol-phosphate. Enzyme analysis in patients' fibroblasts confirmed a dolichol kinase deficiency in all families. In comparison with the generally multisystem presentation in CDG, the nonsyndromic DCM in several individuals was remarkable. Investigation of other dolichol-phosphate dependent glycosylation pathways in biopsied heart tissue indicated reduced O-mannosylation of alpha-dystroglycan with concomitant functional loss of its laminin-binding capacity, which has been linked to DCM. We thus identified a combined deficiency of protein N-glycosylation and alpha-dystroglycan O-mannosylation in patients with nonsyndromic DCM due to autosomal recessive DOLK mutations

    Predictive Performance of a Gentamicin Pharmacokinetic Model in Term Neonates with Perinatal Asphyxia Undergoing Controlled Therapeutic Hypothermia

    Get PDF
    Background:Model validation procedures are crucial when population pharmacokinetic (PK) models are used to develop dosing algorithms and to perform model-informed precision dosing. We have previously published a population PK model describing the PK of gentamicin in term neonates with perinatal asphyxia during controlled therapeutic hypothermia (TH), which showed altered gentamicin clearance during the hypothermic phase dependent on gestational age and weight. In this study, the predictive performance and generalizability of this model were assessed using an independent data set of neonates with perinatal asphyxia undergoing controlled TH.Methods:The external data set contained a subset of neonates included in the prospective observational multicenter PharmaCool Study. Predictive performance was assessed by visually inspecting observed-versus-predicted concentration plots and calculating bias and precision. In addition, simulation-based diagnostics, model refitting, and bootstrap analyses were performed.Results:The external data set included 323 gentamicin concentrations of 39 neonates. Both the model-building and external data set included neonates from multiple centers. The original gentamicin PK model predicted the observed gentamicin concentrations with adequate accuracy and precision during all phases of controlled TH. Model appropriateness was confirmed with prediction-corrected visual predictive checks and normalized prediction distribution error analyses. Model refitting to the merged data set (n = 86 neonates with 935 samples) showed accurate estimation of PK parameters.Conclusions:The results of this external validation study justify the generalizability of the gentamicin dosing recommendations made in the original study for neonates with perinatal asphyxia undergoing controlled TH (5 mg/kg every 36 or 24 h with gestational age 36-41 and 42 wk, respectively) and its applicability in model-informed precision dosing.</p

    Predictive Performance of a Gentamicin Pharmacokinetic Model in Term Neonates with Perinatal Asphyxia Undergoing Controlled Therapeutic Hypothermia

    Get PDF
    Background:Model validation procedures are crucial when population pharmacokinetic (PK) models are used to develop dosing algorithms and to perform model-informed precision dosing. We have previously published a population PK model describing the PK of gentamicin in term neonates with perinatal asphyxia during controlled therapeutic hypothermia (TH), which showed altered gentamicin clearance during the hypothermic phase dependent on gestational age and weight. In this study, the predictive performance and generalizability of this model were assessed using an independent data set of neonates with perinatal asphyxia undergoing controlled TH.Methods:The external data set contained a subset of neonates included in the prospective observational multicenter PharmaCool Study. Predictive performance was assessed by visually inspecting observed-versus-predicted concentration plots and calculating bias and precision. In addition, simulation-based diagnostics, model refitting, and bootstrap analyses were performed.Results:The external data set included 323 gentamicin concentrations of 39 neonates. Both the model-building and external data set included neonates from multiple centers. The original gentamicin PK model predicted the observed gentamicin concentrations with adequate accuracy and precision during all phases of controlled TH. Model appropriateness was confirmed with prediction-corrected visual predictive checks and normalized prediction distribution error analyses. Model refitting to the merged data set (n = 86 neonates with 935 samples) showed accurate estimation of PK parameters.Conclusions:The results of this external validation study justify the generalizability of the gentamicin dosing recommendations made in the original study for neonates with perinatal asphyxia undergoing controlled TH (5 mg/kg every 36 or 24 h with gestational age 36-41 and 42 wk, respectively) and its applicability in model-informed precision dosing.</p
    • …
    corecore