4,351 research outputs found

    A spin pump turnstile: parametric pumping of a spin-polarized current through a nearly-closed quantum dot

    Full text link
    We investigate parametric pumping of a spin-polarized current through a nearly-closed quantum dot in a perpendicular magnetic field. Pumping is achieved by tuning the tunnel couplings to the left and right lead - thereby operating the quantum dot as a turnstile - and changing either the magnetic field or a gate-voltage. We analyze the quantum dynamics of a pumping cycle and the limiting time scales for operating the quantum dot turnstile as a pure spin pump. The proposed device can be used as a fully controllable double-sided and bipolar spin filter and to inject spins "on demand".Comment: 5 pages, 2 figures, one reference correcte

    Rectification of displacement currents in an adiabatic electron pump

    Full text link
    Rectification of ac displacement currents generated by periodic variation of two independent gate voltages of a quantum dot can lead to a dc voltage linear in the frequency. The presence of this rectified displacement current could account for the magnetic field symmetry observed in a recent measurement on an adiabatic quantum electron pump by Switkes et al. [Science 283, 1905 (1999)].Comment: 2 pages, RevTeX; 1 figur

    The effects of Chern-Simons gravity on bodies orbiting the Earth

    Get PDF
    One of the possible low-energy consequences of string theory is the addition of a Chern-Simons term to the standard Einstein-Hilbert action of general relativity. It can be argued that the quintessence field should couple to this Chern-Simons term, and if so, it drives in the linearized theory a parity-violating interaction between the gravito-electric and gravitomagnetic fields. In this paper, the linearized spacetime for Chern-Simons gravity around a massive spinning body is found to include new modifications to the gravitomagnetic field that have not appeared in previous work. The orbits of test bodies and the precession of gyroscopes in this spacetime are calculated, leading to new constraints on the Chern-Simons parameter space due to current satellite experiments.Comment: 9 pages, 2 figures; minor corrections made; to appear in PR

    Current induced transverse spin-wave instability in thin ferromagnets: beyond linear stability analysis

    Full text link
    A sufficiently large unpolarized current can cause a spin-wave instability in thin nanomagnets with asymmetric contacts. The dynamics beyond the instability is understood in the perturbative regime of small spin-wave amplitudes, as well as by numerically solving a discretized model. In the absence of an applied magnetic field, our numerical simulations reveal a hierarchy of instabilities, leading to chaotic magnetization dynamics for the largest current densities we consider.Comment: 14 pages, 10 figures; revtex

    Andreev interference in adiabatic pumping

    Full text link
    Within the scattering approach, we develop a model for adiabatic quantum pumping in hybrid normal/superconductor systems where several superconducting leads are present. This is exploited to study Andreev-interference effects on adiabatically pumped charge in a 3-arm beam splitter attached to one normal and two superconducting leads with different phases of the order parameters. We derive expressions for the pumped charge through the normal lead for different parameters for the scattering region, and elucidate the effects due to Andreev interference. In contrast to what happens for voltage-driven transport, Andreev interference does not yield in general a pumped current which is a symmetric function of the superconducting-phase difference.Comment: 4 pages, 1 figur

    Photonic excess noise and wave localization

    Get PDF
    This is a theory for the effect of localization on the super-Poissonian noise of radiation propagating through an absorbing disordered waveguide. Localization suppresses both the mean photon current I and the noise power P, but the Fano factor P/I is found to remain unaffected. For strong absorption the Fano factor has the universal value 1+3f/2 (with f the Bose-Einstein function), regardless of whether the waveguide is long or short compared to the localization length.Comment: 3 pages including 3 figure

    Effects of interaction on an adiabatic quantum electron pump

    Full text link
    We study the effects of inter-electron interactions on the charge pumped through an adiabatic quantum electron pump. The pumping is through a system of barriers, whose heights are deformed adiabatically. (Weak) interaction effects are introduced through a renormalisation group flow of the scattering matrices and the pumped charge is shown to {\it always} approach a quantised value at low temperatures or long length scales. The maximum value of the pumped charge is set by the number of barriers and is given by Qmax=nb1Q_{\rm max} = n_b -1. The correlation between the transmission and the charge pumped is studied by seeing how much of the transmission is enclosed by the pumping contour. The (integer) value of the pumped charge at low temperatures is determined by the number of transmission maxima enclosed by the pumping contour. The dissipation at finite temperatures leading to the non-quantised values of the pumped charge scales as a power law with the temperature (QQintT2αQ-Q_{\rm int} \propto T^{2\alpha}), or with the system size (QQintLs2αQ-Q_{\rm int} \propto L_s^{-2\alpha}), where α\alpha is a measure of the interactions and vanishes at T=0 (Ls=)T=0 ~(L_s=\infty). For a double barrier system, our result agrees with the quantisation of pumped charge seen in Luttinger liquids.Comment: 9 pages, 9 figures, better quality figures available on request from author

    Distributions of the Conductance and its Parametric Derivatives in Quantum Dots

    Full text link
    Full distributions of conductance through quantum dots with single-mode leads are reported for both broken and unbroken time-reversal symmetry. Distributions are nongaussian and agree well with random matrix theory calculations that account for a finite dephasing time, τϕ\tau_\phi, once broadening due to finite temperature TT is also included. Full distributions of the derivatives of conductance with respect to gate voltage P(dg/dVg)P(dg/dV_g) are also investigated.Comment: 4 pages (REVTeX), 4 eps figure

    Voltage-probe and imaginary potential models for dephasing in a chaotic quantum dot

    Full text link
    We compare two widely used models for dephasing in a chaotic quantum dot: The introduction of a fictitious voltage probe into the scattering matrix and the addition of an imaginary potential to the Hamiltonian. We identify the limit in which the two models are equivalent and compute the distribution of the conductance in that limit. Our analysis explains why previous treatments of dephasing gave different results. The distribution remains non-Gaussian for strong dephasing if the coupling of the quantum dot to the electron reservoirs is via ballistic single-mode point contacts, but becomes Gaussian if the coupling is via tunneling contacts.Comment: 9 pages, RevTeX, 6 figures. Mistake in Eq. (35) correcte
    corecore