421 research outputs found
Measurement of the half-life of the T= mirror decay of Ne and its implication on physics beyond the standard model
The superallowed mixed mirror decay
of Ne to F is excellently suited for high precision studies of
the weak interaction. However, there is some disagreement on the value of the
half-life. In a new measurement we have determined this quantity to be
= s, which differs
from the previous world average by 3 standard deviations. The impact of this
measurement on limits for physics beyond the standard model such as the
presence of tensor currents is discussed.Comment: 5 pages, 3 figures, 1 tabl
Search for the Neutron Decay n X+ where X is a dark matter particle
In a recent paper submitted to Physical Review Letters, Fornal and Grinstein
have suggested that the discrepancy between two different methods of neutron
lifetime measurements, the beam and bottle methods can be explained by a
previously unobserved dark matter decay mode, n X+ where X
is a dark matter particle. We have performed a search for this decay mode over
the allowed range of energies of the monoenergetic gamma ray for X to be a dark
matter particle. We exclude the possibility of a sufficiently strong branch to
explain the lifetime discrepancy with greater than 4 sigma confidence.Comment: 6 pages 3 figure
First direct constraints on Fierz interference in free neutron decay
Precision measurements of free neutron -decay have been used to
precisely constrain our understanding of the weak interaction. However the
neutron Fierz interference term , which is particularly sensitive to
Beyond-Standard-Model tensor currents at the TeV scale, has thus far eluded
measurement. Here we report the first direct constraints on this term, finding
,
consistent with the Standard Model. The uncertainty is dominated by absolute
energy reconstruction and the linearity of the beta spectrometer energy
response
First Measurement of the Neutron -Asymmetry with Ultracold Neutrons
We report the first measurement of angular correlation parameters in neutron
-decay using polarized ultracold neutrons (UCN). We utilize UCN with
energies below about 200 neV, which we guide and store for s in a Cu
decay volume. The potential of a static 7 T field
external to the decay volume provides a 420 neV potential energy barrier to the
spin state parallel to the field, polarizing the UCN before they pass through
an adiabatic fast passage (AFP) spin-flipper and enter a decay volume, situated
within a 1 T, superconducting solenoidal spectrometer. We
determine a value for the -asymmetry parameter , proportional to
the angular correlation between the neutron polarization and the electron
momentum, of .Comment: 4 pages, 2 figures, 1 table, submitted to Phys. Rev. Let
Status of the UCNτ experiment
The neutron is the simplest nuclear system that can be used to probe the structure of the weak interaction and search for physics beyond the standard model. Measurements of neutron lifetime and β-decay correlation coefficients with precisions of 0.02% and 0.1%, respectively, would allow for stringent constraints on new physics. The UCNτ experiment uses an asymmetric magneto-gravitational UCN trap with in situ counting of surviving neutrons to measure the neutron lifetime, τ_n = 877.7s (0.7s)_(stat) (+0.4/−0.2s)_(sys). We discuss the recent result from UCNτ, the status of ongoing data collection and analysis, and the path toward a 0.25 s measurement of the neutron lifetime with UCNτ
Position-sensitive detection of ultracold neutrons with an imaging camera and its implications to spectroscopy
Position-sensitive detection of ultracold neutrons (UCNs) is demonstrated
using an imaging charge-coupled device (CCD) camera. A spatial resolution less
than 15 m has been achieved, which is equivalent to an UCN energy
resolution below 2 pico-electron-volts through the relation . Here, the symbols , , and are the
energy resolution, the spatial resolution, the neutron rest mass and the
gravitational acceleration, respectively. A multilayer surface convertor
described previously is used to capture UCNs and then emits visible light for
CCD imaging. Particle identification and noise rejection are discussed through
the use of light intensity profile analysis. This method allows different types
of UCN spectroscopy and other applications.Comment: 12 figures, 28 pages, accepted for publication in NIM
The Nab Experiment: A Precision Measurement of Unpolarized Neutron Beta Decay
Neutron beta decay is one of the most fundamental processes in nuclear
physics and provides sensitive means to uncover the details of the weak
interaction. Neutron beta decay can evaluate the ratio of axial-vector to
vector coupling constants in the standard model, , through
multiple decay correlations. The Nab experiment will carry out measurements of
the electron-neutrino correlation parameter with a precision of and the Fierz interference term to
in unpolarized free neutron beta decay. These results, along with a more
precise measurement of the neutron lifetime, aim to deliver an independent
determination of the ratio with a precision of that will allow an evaluation of and sensitively
test CKM unitarity, independent of nuclear models. Nab utilizes a novel, long
asymmetric spectrometer that guides the decay electron and proton to two large
area silicon detectors in order to precisely determine the electron energy and
an estimation of the proton momentum from the proton time of flight. The Nab
spectrometer is being commissioned at the Fundamental Neutron Physics Beamline
at the Spallation Neutron Source at Oak Ridge National Lab. We present an
overview of the Nab experiment and recent updates on the spectrometer,
analysis, and systematic effects.Comment: Presented at PPNS201
- …