2,502 research outputs found

    Structure and dynamics of the interface between a binary hard-sphere crystal of NaCl type and its coexisting binary fluid

    Get PDF
    Molecular dynamics simulations are performed to study the [100] and [111] orientations of the crystal-melt interface between an ordered two-component hard sphere with a NaCl structure and its coexisting binary hard-sphere fluid. The diameter ratio of the two types of hard spheres making up the mixture is taken to be 0.414. This work complements our earlier interface simulations [J. Chem. Phys.116, 3410] for the same diameter ratio at lower pressures where the smaller component is immiscible in the solid and the fluid mixture coexists with a pure FCC crystal of large particles. Density profiles and diffusion coefficient profiles are presented for the AB interfacial system. We find that for this system, the transition from crystal-like to fluid-like behavior of both the density and diffusion constant profiles occurs over a narrower region than that seen in our previous studies [J. Chem. Phys. 116, 3410] of the FCC/binary fluid system. But similar to what was found in the FCC/binary fluid interface the transition region for the large particle diffusion constant is shifted about the size of the large particles toward the fluid phase relative to that for the small particles.Comment: 8 page

    Million-atom molecular dynamics simulation by order-N electronic structure theory and parallel computation

    Full text link
    Parallelism of tight-binding molecular dynamics simulations is presented by means of the order-N electronic structure theory with the Wannier states, recently developed (J. Phys. Soc. Jpn. 69,3773 (2000)). An application is tested for silicon nanocrystals of more than millions atoms with the transferable tight-binding Hamiltonian. The efficiency of parallelism is perfect, 98.8 %, and the method is the most suitable to parallel computation. The elapse time for a system of 2×1062\times 10^6 atoms is 3.0 minutes by a computer system of 64 processors of SGI Origin 3800. The calculated results are in good agreement with the results of the exact diagonalization, with an error of 2 % for the lattice constant and errors less than 10 % for elastic constants.Comment: 5 pages, 3 figure

    Application of robotics In the clinical laboratory

    Get PDF
    The basic types of robot are explained, and the performances and costs of some commercial examples are given. The potential advantages and problems of introducing robots into clinical laboratories are identified and the specifcation of a suitable robot is developed. None of the commercially available robots meets all aspects of the specificalion, and currently the purchase of a robot is considered premature for most clinical laboratories

    Molecular dynamics study of melting of a bcc metal-vanadium II : thermodynamic melting

    Full text link
    We present molecular dynamics simulations of the thermodynamic melting transition of a bcc metal, vanadium using the Finnis-Sinclair potential. We studied the structural, transport and energetic properties of slabs made of 27 atomic layers with a free surface. We investigated premelting phenomena at the low-index surfaces of vanadium; V(111), V(001), and V(011), finding that as the temperature increases, the V(111) surface disorders first, then the V(100) surface, while the V(110) surface remains stable up to the melting temperature. Also, as the temperature increases, the disorder spreads from the surface layer into the bulk, establishing a thin quasiliquid film in the surface region. We conclude that the hierarchy of premelting phenomena is inversely proportional to the surface atomic density, being most pronounced for the V(111) surface which has the lowest surface density

    Use of Simulation to Visualize Healthcare Worker Exposure to Aerosol in the Operating Room

    Get PDF
    Simulation resources offer an opportunity to highlight aerosol dispersion within the operating room environment. We demonstrate our methodology with a supporting video that can offer operating room teams support in their practical understanding of aerosol exposure and the importance of personal protective equipment

    Thermoelastic Damping in Micro- and Nano-Mechanical Systems

    Get PDF
    The importance of thermoelastic damping as a fundamental dissipation mechanism for small-scale mechanical resonators is evaluated in light of recent efforts to design high-Q micrometer- and nanometer-scale electro-mechanical systems (MEMS and NEMS). The equations of linear thermoelasticity are used to give a simple derivation for thermoelastic damping of small flexural vibrations in thin beams. It is shown that Zener's well-known approximation by a Lorentzian with a single thermal relaxation time slightly deviates from the exact expression.Comment: 10 pages. Submitted to Phys. Rev.

    Adjusting the melting point of a model system via Gibbs-Duhem integration: application to a model of Aluminum

    Get PDF
    Model interaction potentials for real materials are generally optimized with respect to only those experimental properties that are easily evaluated as mechanical averages (e.g., elastic constants (at T=0 K), static lattice energies and liquid structure). For such potentials, agreement with experiment for the non-mechanical properties, such as the melting point, is not guaranteed and such values can deviate significantly from experiment. We present a method for re-parameterizing any model interaction potential of a real material to adjust its melting temperature to a value that is closer to its experimental melting temperature. This is done without significantly affecting the mechanical properties for which the potential was modeled. This method is an application of Gibbs-Duhem integration [D. Kofke, Mol. Phys.78, 1331 (1993)]. As a test we apply the method to an embedded atom model of aluminum [J. Mei and J.W. Davenport, Phys. Rev. B 46, 21 (1992)] for which the melting temperature for the thermodynamic limit is 826.4 +/- 1.3K - somewhat below the experimental value of 933K. After re-parameterization, the melting temperature of the modified potential is found to be 931.5K +/- 1.5K.Comment: 9 pages, 5 figures, 4 table

    Renormalization group approach to multiscale modelling in materials science

    Full text link
    Dendritic growth, and the formation of material microstructure in general, necessarily involves a wide range of length scales from the atomic up to sample dimensions. The phase field approach of Langer, enhanced by optimal asymptotic methods and adaptive mesh refinement, copes with this range of scales, and provides an effective way to move phase boundaries. However, it fails to preserve memory of the underlying crystallographic anisotropy, and thus is ill-suited for problems involving defects or elasticity. The phase field crystal (PFC) equation-- a conserving analogue of the Hohenberg-Swift equation --is a phase field equation with periodic solutions that represent the atomic density. It can natively model elasticity, the formation of solid phases, and accurately reproduces the nonequilibrium dynamics of phase transitions in real materials. However, the PFC models matter at the atomic scale, rendering it unsuitable for coping with the range of length scales in problems of serious interest. Here, we show that a computationally-efficient multiscale approach to the PFC can be developed systematically by using the renormalization group or equivalent techniques to derive appropriate coarse-grained coupled phase and amplitude equations, which are suitable for solution by adaptive mesh refinement algorithms
    corecore