6 research outputs found

    Analyse multi physique des sources de défiabilisation du microcontact électrique à destination des interrupteurs MEMS

    Get PDF
    Les micro- et nanotechnologies (MNT) connaissent aujourd'hui un essor important dans des domaines très variés. On observe en particulier un développement des filières de micro-interrupteurs. En effet, les interrupteurs MEMS ont démontré un gain de performances significatif en comparaison avec les systèmes de commutation actuels. Ces composants sont donc devenus très attractifs pour de nombreuses applications grand public et haute fiabilité, notamment en raison de la facilité d'intégration des microsystèmes à d'autres composants passifs ou issus de la filière microélectronique. L'énorme potentiel de cette technologie a poussé la communauté scientifique à envisager les micro-interrupteurs comme technologie de substitution aux systèmes de commutation actuels pour les applications faibles à moyennes puissances. Cependant, ces interrupteurs MEMS n'ont pas encore atteint un niveau de fiabilité convenable pour entrer en phase d'industrialisation poussée. L'une des principales défaillances observées durant le fonctionnement du composant se traduit soit par l'augmentation de la résistance de contact en fonction du nombre de cycles, allant jusqu'à atteindre une résistance infinie, soit par le collage irrémédiable des deux électrodes de contact au cours des cycles de commutations, annihilant la commande du composant. Ces deux phénomènes limitent de manière drastique la durée de vie du micro-interrupteur. La fiabilité du microcontact électrique, demeure ainsi le point critique dans ce type de composant, en raison des forces de contact bien souvent très faibles, entrainant des aires de contact effectives extrêmement réduites et des températures à l'interface de contact relativement élevées. C'est pourquoi de nouvelles techniques de caractérisation du microcontact ont été développées pendant cette thèse afin d'étudier l'évolution de la résistance de contact en fonction du nombre de cycles et de la force appliquée. Ces bancs de test nous permettent d'analyser le comportement électromécanique et électrothermique du microcontact, afin de comprendre l'origine des mécanismes de défaillance à travers une approche physique. L'originalité des travaux réalisés dans cette thèse réside dans l'étude de la température à l'interface de contact, considérée ici comme le principal vecteur de défaillance des contacts dans les interrupteurs MEMS ohmiques. En effet, la hausse de la température de contact engendre les principaux mécanismes de défaillance du microcontact, à savoir l'adhésion, le transfert de matière et la croissance de films isolants en surface du contact. Plusieurs types de contact seront étudiés afin d'accroitre la compréhension des phénomènes physiques à l'origine des défaillances pour finalement proposer une configuration fiable, fonctionnant malgré les contraintes thermiques à l'interface de contact.Research on electrical contact characterization for microelectromechanical system (MEMS) switches has been driven by the necessity to reach a high-reliability level for micro-switch applications. One of the main failure observed when aging devices with gold contacts is the increase of the electrical contact resistance. It is related to degradations of the surface topography caused by heating, adhesion forces, etc. In this paper we investigate the performance of gold and an alternative material, ruthenium, using a methodology dedicated to MEMS contacts: a nanoindenter is used to actuate mechanically the structure, providing an accurate control of the force applied and of the resulting displacement. The electrical resistance is measured by cross rods technique "four wires" to avoid any measurement of the wire access resistances. A high resolution source meter with programmed voltage compliance and micro voltmeter is used. The test vehicles are surface micromachined on silicon substrate. Dedicated tests and modelling are presented with 5 microm² square bumps under mechanical load (until 250microN) and electrical current (1mA-100mA). Analyses of contact force dependence, temperature dependence, adhesion forces, evolution of the contact area, creep behavior and topological modifications are discussed. Regarding the results, better understanding of micro-contact behavior related to the impact of current at low- to medium-power levels is obtained. Contact heating until the softening temperature is found to be the main factor leading to shift of mechanical properties of contact materials and topological modifications. Finally an enhanced stability of the bimetallic contact was demonstrated considering sensitivity to power increase

    Finite element based surface roughness study for ohmic contact of microswitches

    No full text
    Finite element method (FEM) is used to model ohmic contact in microswitches. A determinist approach is adopted, including atomic force microscope (AFM) scanning real contact surfaces and generating rough surfaces with three-dimensional mesh. FE frictionless models are set up with the elastoplastic material and the simulations are performed with a loading-unloading cycle. Two material properties, gold and ruthenium, are studied in the simulations. The effect of roughness is investigated by comparing the models with several smoothing intensities and asperity heights. The comparison is quantitatively analyzed with relations of force vs. displacement, force vs. contact area and force vs. electrical contact resistance (ECR); further the evolution of spots in contact during a loading-unloading cycle is studied

    Validation of mechanical damage monitoring on aluminium freestanding thin films using electrical measurements

    Get PDF
    This paper describes a new technique allowing the monitoring of damage in metallic freestanding thin films during micro-tensile test by using electrical characterization. After a presentation of the set-up, results obtained on aluminium thin coatings by using two calculation methods for damage variable are presented and commented

    Analyse multi physique des sources de défiabilisation du microcontact électrique à destination des interrupteurs MEMS

    No full text
    TOULOUSE3-BU Santé-Centrale (315552105) / SudocSudocFranceF
    corecore