26 research outputs found

    The p53 tumour suppressor inhibits glucocorticoid‐induced proliferation of erythroid progenitors

    Full text link
    Hypoxia encountered at high altitude, blood loss and erythroleukemia instigate stress erythropoiesis, which involves glucocorticoid-induced proliferation of erythroid progenitors (ebls). The tumour suppressor p53 stimulates hematopoietic cell maturation and antagonizes glucocorticoid receptor (GR) activity in hypoxia, suggesting that it may inhibit stress erythropoiesis. We report that mouse fetal liver ebls that lack p53 proliferate better than wild-type cells in the presence of the GR agonist dexamethasone. An important mediator of GR-induced ebl self-renewal, the c-myb gene, is induced to higher levels in p53(–/–) ebls by dexamethasone. The stress response to anemia is faster in the spleens of p53(–/–) mice, as shown by the higher levels of colony forming units erythroids and the increase in the CD34/c-kit double positive population. Our results show that p53 antagonizes GR-mediated ebl expansion and demonstrate for the first time that p53–GR cross-talk is important in a physiological process in vivo: stress erythropoiesis

    Unique Differentiation Profile of Mouse Embryonic Stem Cells in Rotary and Stirred Tank Bioreactors

    No full text
    Embryonic stem (ES)-cell-derived lineage-specific stem cells, for example, hematopoietic stem cells, could provide a potentially unlimited source for transplantable cells, especially for cell-based therapies. However, reproducible methods must be developed to maximize and scale-up ES cell differentiation to produce clinically relevant numbers of therapeutic cells. Bioreactor-based dynamic culture conditions are amenable to large-scale cell production, but few studies have evaluated how various bioreactor types and culture parameters influence ES cell differentiation, especially hematopoiesis. Our results indicate that cell seeding density and bioreactor speed significantly affect embryoid body formation and subsequent generation of hematopoietic stem and progenitor cells in both stirred tank (spinner flask) and rotary microgravity (Synthecon™) type bioreactors. In general, high percentages of hematopoietic stem and progenitor cells were generated in both bioreactors, especially at high cell densities. In addition, Synthecon bioreactors produced more sca-1+ progenitors and spinner flasks generated more c-Kit+ progenitors, demonstrating their unique differentiation profiles. cDNA microarray analysis of genes involved in pluripotency, germ layer formation, and hematopoietic differentiation showed that on day 7 of differentiation, embryoid bodies from both bioreactors consisted of all three germ layers of embryonic development. However, unique gene expression profiles were observed in the two bioreactors; for example, expression of specific hematopoietic genes were significantly more upregulated in the Synthecon cultures than in spinner flasks. We conclude that bioreactor type and culture parameters can be used to control ES cell differentiation, enhance unique progenitor cell populations, and provide means for large-scale production of transplantable therapeutic cells

    Simultaneous expression and regulation of G‐CSF and IL‐6 mRNA in adherent human monocytes and fibroblasts

    No full text
    The regulation of granulocyte-colony stimulating factor (G-CSF) and interleukin-6 (IL-6) mRNA was studied in human adherent monocytes in response to the protein kinase C activator, oleolyl-acetylglycerol (OAG), the calcium-ionophore A23187 and the cyclic AMP elevating agents, dibutyryl c-AMP (DBcAMP), cholera toxin and isobutyl-methylxanthine (IBMX). G-CSF and IL-6 transcripts were simultaneously expressed in response to OAG, A23187, DBcAMP, IBMX and cholera toxin. However, the time course demonstrated a difference; a rapid induction by OAG and A23187 and a delayed pattern by cAMP elevating agents. In addition it appeared that the induction of CSFs by DBcAMP was independent of the adherence procedure or the presence of fetal bovine serum but could be counteracted by the simultaneous addition of H8, an inhibitor of the cAMP dependent kinases. Finally, experiments were performed to study in how far comparable mechanisms operate in other cell types. Human fetal lung fibroblasts were stimulated with A23187, DBcAMP and OAG. All these agents induced simultaneous expression of G-CSF and IL-6 mRNA and secretion of proteins, indicating that different signalling pathways exist in both cell types which regulate the expression of both genes
    corecore