3 research outputs found

    The Hopf Algebra of Renormalization, Normal Coordinates and Kontsevich Deformation Quantization

    Full text link
    Using normal coordinates in a Poincar\'e-Birkhoff-Witt basis for the Hopf algebra of renormalization in perturbative quantum field theory, we investigate the relation between the twisted antipode axiom in that formalism, the Birkhoff algebraic decomposition and the universal formula of Kontsevich for quantum deformation.Comment: 21 pages, 15 figure

    Quantum field theory and Hopf algebra cohomology

    Full text link
    We exhibit a Hopf superalgebra structure of the algebra of field operators of quantum field theory (QFT) with the normal product. Based on this we construct the operator product and the time-ordered product as a twist deformation in the sense of Drinfeld. Our approach yields formulas for (perturbative) products and expectation values that allow for a significant enhancement in computational efficiency as compared to traditional methods. Employing Hopf algebra cohomology sheds new light on the structure of QFT and allows the extension to interacting (not necessarily perturbative) QFT. We give a reconstruction theorem for time-ordered products in the spirit of Streater and Wightman and recover the distinction between free and interacting theory from a property of the underlying cocycle. We also demonstrate how non-trivial vacua are described in our approach solving a problem in quantum chemistry.Comment: 39 pages, no figures, LaTeX + AMS macros; title changed, minor corrections, references update

    Combinatorial Hopf algebras in quantum field theory I

    Full text link
    This manuscript stands at the interface between combinatorial Hopf algebra theory and renormalization theory. Its plan is as follows: Section 1 is the introduction, and contains as well an elementary invitation to the subject. The rest of part I, comprising Sections 2-6, is devoted to the basics of Hopf algebra theory and examples, in ascending level of complexity. Part II turns around the all-important Faa di Bruno Hopf algebra. Section 7 contains a first, direct approach to it. Section 8 gives applications of the Faa di Bruno algebra to quantum field theory and Lagrange reversion. Section 9 rederives the related Connes-Moscovici algebras. In Part III we turn to the Connes-Kreimer Hopf algebras of Feynman graphs and, more generally, to incidence bialgebras. In Section10 we describe the first. Then in Section11 we give a simple derivation of (the properly combinatorial part of) Zimmermann's cancellation-free method, in its original diagrammatic form. In Section 12 general incidence algebras are introduced, and the Faa di Bruno bialgebras are described as incidence bialgebras. In Section 13, deeper lore on Rota's incidence algebras allows us to reinterpret Connes-Kreimer algebras in terms of distributive lattices. Next, the general algebraic-combinatorial proof of the cancellation-free formula for antipodes is ascertained; this is the heart of the paper. The structure results for commutative Hopf algebras are found in Sections 14 and 15. An outlook section very briefly reviews the coalgebraic aspects of quantization and the Rota-Baxter map in renormalization.Comment: 94 pages, LaTeX figures, precisions made, typos corrected, more references adde
    corecore