599 research outputs found
Transient interference of transmission and incidence
Due to a transient quantum interference during a wavepacket collision with a
potential barrier, a particular momentum, that depends on the potential
parameters but is close to the initial average momentum, becomes suppressed.
The hole left pushes the momentum distribution outwards leading to a
significant constructive enhancement of lower and higher momenta. This is
explained in the momentum complex-plane language in terms of a saddle point and
two contiguous ``structural'' poles, which are not associated with resonances
but with incident and transmitted components of the wavefunction.Comment: 4 pages of text, 6 postscript figures, revte
Superficial Scald versus Ethanol Vapours: A Dose Response
Early picked "Granny Smith" apples (Malus domestica Borkh.) were stored under air or CA (controlled atmosphere at 2 kPa O2 and <1 kPa CO2) at 1°C. During the first week of storage, fruit was subjected to ethanol vapours in doses
from 0 to 8 g/kg of fruit. Ethanol at 4 g/kg protected fruit against superficial scald in
CA storage for at least 5.5 months, plus two weeks in cold air storage, plus a week at
ambient temperature. Ethanol at 6 g/kg protected fruit in cold air storage for 3
months, plus a week at ambient temperature. Effects of ethanol vapours and CA on
headspace ethylene levels are discussed. Ethanol vapours did not cause significant
off-flavours in "Granny Smith" apples (consumer panel, hedonic scale), or purpling
of the skin of Red Delicious apples (visual assessment)
Explicit solution for a Gaussian wave packet impinging on a square barrier
The collision of a quantum Gaussian wave packet with a square barrier is
solved explicitly in terms of known functions. The obtained formula is suitable
for performing fast calculations or asymptotic analysis. It also provides
physical insight since the description of different regimes and collision
phenomena typically requires only some of the terms.Comment: To be published in J. Phys.
Stochastic dynamics of an electron in a Penning trap: phase flips correlated with amplitude collapses and revivals
We study the effect of noise on the axial mode of an electron in a Penning
trap under parametric-resonance conditions. Our approach, based on the
application of averaging techniques to the description of the dynamics,
provides an understanding of the random phase flips detected in recent
experiments. The observed correlation between the phase jumps and the amplitude
collapses is explained. Moreover, we discuss the actual relevance of noise
color to the identified phase-switching mechanism. Our approach is then
generalized to analyze the persistence of the stochastic phase flips in the
dynamics of a cloud of N electrons. In particular, we characterize the detected
scaling of the phase-jump rate with the number of electrons.Comment: 15 pages, 6 figure
Time-resolved multi-mass ion imaging: femtosecond UV-VUV pump-probe spectroscopy with the PImMS camera
The Pixel-Imaging Mass Spectrometry (PImMS) camera allows for 3D charged
particle imaging measurements, in which the particle time-of-flight is recorded
along with position. Coupling the PImMS camera to an ultrafast
pump-probe velocity-map imaging spectroscopy apparatus therefore provides a
route to time-resolved multi-mass ion imaging, with both high count rates and
large dynamic range, thus allowing for rapid measurements of complex
photofragmentation dynamics. Furthermore, the use of vacuum ultraviolet
wavelengths for the probe pulse allows for an enhanced observation window for
the study of excited state molecular dynamics in small polyatomic molecules
having relatively high ionization potentials. Herein, preliminary time-resolved
multi-mass imaging results from CFI photolysis are presented. The
experiments utilized femtosecond UV and VUV (160.8~nm and 267~nm) pump and
probe laser pulses in order to demonstrate and explore this new time-resolved
experimental ion imaging configuration. The data indicates the depth and power
of this measurement modality, with a range of photofragments readily observed,
and many indications of complex underlying wavepacket dynamics on the excited
state(s) prepared
Logos indicating environmental sustainability in wine production: an exploratory study on how do Burgundy wine consumers perceive them.
[possui errata, v. 66, dez. 2014, p. 515]
Time dependence of evanescent quantum waves
The time dependence of quantum evanescent waves generated by a point source
with an infinite or a limited frequency band is analyzed. The evanescent wave
is characterized by a forerunner (transient) related to the precise way the
source is switched on. It is followed by an asymptotic, monochromatic wave
which at long times reveals the oscillation frequency of the source. For a
source with a sharp onset the forerunner is exponentially larger than the
monochromatic solution and a transition from the transient regime to the
asymtotic regime occurs only at asymptotically large times. In this case, the
traversal time for tunneling plays already a role only in the transient regime.
To enhance the monochromatic solution compared to the forerunner we investigate
(a) frequency band limited sources and (b) the short time Fourier analysis (the
spectrogram) corresponding to a detector which is frequency band limited.
Neither of these two methods leads to a precise determination of the traversal
time. However, if they are limited to determine the traversal time only with a
precision of the traversal time itself both methods are successful: In this
case the transient behavior of the evanescent waves is at a time of the order
of the traversal time followed by a monochromatic wave which reveals the
frequency of the source.Comment: 16 text pages and 9 postscript figure
Tunneling dynamics in relativistic and nonrelativistic wave equations
We obtain the solution of a relativistic wave equation and compare it with
the solution of the Schroedinger equation for a source with a sharp onset and
excitation frequencies below cut-off. A scaling of position and time reduces to
a single case all the (below cut-off) nonrelativistic solutions, but no such
simplification holds for the relativistic equation, so that qualitatively
different ``shallow'' and ``deep'' tunneling regimes may be identified
relativistically. The nonrelativistic forerunner at a position beyond the
penetration length of the asymptotic stationary wave does not tunnel;
nevertheless, it arrives at the traversal (semiclassical or
B\"uttiker-Landauer) time "tau". The corresponding relativistic forerunner is
more complex: it oscillates due to the interference between two saddle point
contributions, and may be characterized by two times for the arrival of the
maxima of lower and upper envelops. There is in addition an earlier
relativistic forerunner, right after the causal front, which does tunnel.
Within the penetration length, tunneling is more robust for the precursors of
the relativistic equation
Action scales for quantum decoherence and their relation to structures in phase space
A characteristic action is defined whose magnitude determines some
properties of the expectation value of a general quantum displacement operator.
These properties are related to the capability of a given environmental
`monitoring' system to induce decoherence in quantum systems coupled to it. We
show that the scale for effective decoherence is given by . We relate this characteristic action with a complementary
quantity, , and analyse their connection with the main features of
the pattern of structures developed by the environmental state in different
phase space representations. The relevance of the -action scale is
illustrated using both a model quantum system solved numerically and a set of
model quantum systems for which analytical expressions for the time-averaged
expectation value of the displacement operator are obtained explicitly.Comment: 12 pages, 3 figure
- …