10 research outputs found

    Application of Time-Lapse ERT Imaging to Watershed Characterization

    Get PDF
    Time-lapse electrical resistivity tomography (ERT) has many practical applications to the study of subsurface properties and processes. When inverting time-lapse ERT data, it is useful to proceed beyond straightforward inversion of data differences and take advantage of the time-lapse nature of the data. We assess various approaches for inverting and interpreting time-lapse ERT data and determine that two approaches work well. The first approach is model subtraction after separate inversion of the data from two time periods, and the second approach is to use the inverted model from a base data set as the reference model or prior information for subsequent time periods. We prefer this second approach. Data inversion methodology should be consideredwhen designing data acquisition; i.e., to utilize the second approach, it is important to collect one or more data sets for which the bulk of the subsurface is in a background or relatively unperturbed state. A third and commonly used approach to time-lapse inversion, inverting the difference between two data sets, localizes the regions of the model in which change has occurred; however, varying noise levels between the two data sets can be problematic. To further assess the various time-lapse inversion approaches, we acquired field data from a catchment within the Dry Creek Experimental Watershed near Boise, Idaho, U.S.A. We combined the complimentary information from individual static ERT inversions, time-lapse ERT images, and available hydrologic data in a robust interpretation scheme to aid in quantifying seasonal variations in subsurface moisture content

    Imaging Thermal Stratigraphy in Freshwater Lakes Using Georadar

    Get PDF
    Thermal stratification exerts significant control over biogeochemical processing in freshwater lakes. Thus, the temporal and spatial distribution of the thermal structure is an important component in understanding lake ecosystems. We present the first reported observations of lake thermal stratification from surface based georadar measurements acquired over two small freshwater lakes. This method is very useful because it can provide rapid acquisition of 2D or 3D lotic stratification

    Hyporheic Exchange and Water Chemistry of Two Arctic Tundra Streams of Contrasting Geomorphology

    Get PDF
    The North Slope of Alaska’s Brooks Range is underlain by continuous permafrost, but an active layer of thawed sediments develops at the tundra surface and beneath streambeds during the summer, facilitating hyporheic exchange. Our goal was to understand how active layer extent and stream geomorphology influence hyporheic exchange and nutrient chemistry. We studied two arctic tundra streams of contrasting geomorphology: a high-gradient, alluvial stream with riffle-pool sequences and a low-gradient, peat-bottomed stream with large deep pools connected by deep runs. Hyporheic exchange occurred to ~50 cm beneath the alluvial streambed and to only ~15 cm beneath the peat streambed. The thaw bulb was deeper than the hyporheic exchange zone in both stream types. The hyporheic zone was a net source of ammonium and soluble reactive phosphorus in both stream types. The hyporheic zone was a net source of nitrate in the alluvial stream, but a net nitrate sink in the peat stream. The mass flux of nutrients regenerated from the hyporheic zones in these two streams was a small portion of the surface water mass flux. Although small, hyporheic sources of regenerated nutrients help maintain the in-stream nutrient balance. If future warming in the arctic increases the depth of the thaw bulb, it may not increase the vertical extent of hyporheic exchange. The greater impacts on annual contributions of hyporheic regeneration are likely to be due to longer thawed seasons, increased sediment temperatures or changes in geomorphology

    Influence of Morphology and Permafrost Dynamics on Hyporheic Exchange in Arctic Headwater Streams under Warming Climate Conditions

    Get PDF
    We investigated surface-subsurface (hyporheic) exchange in two morphologically distinct arctic headwater streams experiencing warming (thawing) sub-channel conditions. Empirically parameterized and calibrated groundwater flow models were used to assess the influence of sub-channel thaw on hyporheic exchange. Average thaw depths were at least two-fold greater under the higher-energy, alluvial stream than under the lowenergy, peat-lined stream. Alluvial hyporheic exchange had shorter residence times and longer flowpaths that occurred across greater portions of the thawed sediments. For both reaches, the morphologic (longitudinal bed topography) and hydraulic conditions (surface and groundwater flow properties) set the potential for hyporheic flow. Simulations of deeper thaw, as predicted under a warming arctic climate, only influence hyporheic exchange until a threshold depth. This depth is primarily determined by the hydraulic head gradients imposed by the stream morphology. Therefore, arctic hyporheic exchange extent is likely to be independent of greater sub-stream thaw depths

    Transient Storage as a Function of Geomorphology, Discharge, and Permafrost Active Layer Conditions in Arctic Tundra Streams

    Get PDF
    Transient storage of solutes in hyporheic zones or other slow-moving stream waters plays an important role in the biogeochemical processes of streams. While numerous studies have reported a wide range of parameter values from simulations of transient storage, little field work has been done to investigate the correlations between these parameters and shifts in surface and subsurface flow conditions. In this investigation we use the stream properties of the Arctic (namely, highly varied discharges, channel morphologies, and subchannel permafrost conditions) to isolate the effects of discharge, channel morphology, and potential size of the hyporheic zone on transient storage. We repeated stream tracer experiments in five morphologically diverse tundra streams in Arctic Alaska during the thaw season (May–August) of 2004 to assess transient storage and hydrologic characteristics. We compared transient storage model parameters to discharge (Q), the Darcy-Weisbach friction factor (f), and unit stream power (ω). Across all studied streams, permafrost active layer depths (i.e., the potential extent of the hyporheic zone) increased throughout the thaw season, and discharges and velocities varied dramatically with minimum ranges of eight-fold and four-fold, respectively. In all reaches the mean storage residence time (tstor) decreased exponentially with increasing Q, but did not clearly relate to permafrost active layer depths. Furthermore, we found that modeled transient storage metrics (i.e., tstor, storage zone exchange rate (αOTIS), and hydraulic retention (Rh)) correlated better with channel hydraulic descriptors such as f and ω than they did with Q or channel slope. Our results indicate that Q is the first-order control on transient storage dynamics of these streams, and that f and ω are two relatively simple measures of channel hydraulics that may be important metrics for predicting the response of transient storage to perturbations in discharge and morphology in a given stream

    Profiles of Temporal Thaw Depths Beneath Two Arctic Stream Types Using Ground-Penetrating Radar

    No full text
    Thaw depths beneath arctic streams may have significant impact on the seasonal development of hyporheic zone hydraulics. To investigate thaw progression over the 2004 summer season we acquired a series of ground-penetrating radar (GPR) profiles at five sites from May–September, using 100, 200 and 400 MHz antennas. We selected sites with the objective of including stream reaches that span a range of geomorphologic conditions on Alaska\u27s North Slope. Thaw depths interpreted from GPR data were constrained by both recorded subsurface temperature profiles and by pressing a metal probe through the active layer to the point of refusal. We found that low-energy stream environments react much more slowly to seasonal solar input and maintain thaw thicknesses longer throughout the late season whereas thaw depths increase rapidly within high-energy streams at the beginning of the season and decrease over the late season period

    Multi-Offset GPR Methods for Hyporheic Zone Investigations

    No full text
    Porosity of stream sediments has a direct effect on hyporheic exchange patterns and rates. Improved estimates of porosity heterogeneity will yield enhanced simulation of hyporheic exchange processes. Ground-penetrating radar (GPR) velocity measurements are strongly controlled by water content thus accurate measures of GPR velocity in saturated sediments provides estimates of porosity beneath stream channels using petrophysical relationships. Imaging the substream system using surface based reflection measurements is particularly challenging due to large velocity gradients that occur at the transition from open water to saturated sediments. The continuous multi-offset method improves the quality of subsurface images through stacking and provides measurements of vertical and lateral velocity distributions. We applied the continuous multi-offset method to stream sites on the North Slope, Alaska and the Sawtooth Mountains near Boise, Idaho, USA. From the continuous multi-offset data, we measure velocity using reflection tomography then estimate water content and porosity using the Topp equation. These values provide detailed measurements for improved stream channel hydraulic and thermal modelling

    Estimating 3D Variation in Active-Layer Thickness Beneath Arctic Streams Using Ground-Penetrating Radar

    No full text
    We acquired three-dimensional (3D) ground-penetrating radar (GPR) data across three stream sites on the North Slope, AK, in August 2005, to investigate the dependence of thaw depth on channel morphology. Data were migrated with mean velocities derived from multi-offset GPR profiles collected across a stream section within each of the 3D survey areas. GPR data interpretations from the alluvial-lined stream site illustrate greater thaw depths beneath riffle and gravel bar features relative to neighboring pool features. The peat-lined stream sites indicate the opposite; greater thaw depths beneath pools and shallower thaw beneath the connecting runs. Results provide detailed 3D geometry of active-layer thaw depths that can support hydrological studies seeking to quantify transport and biogeochemical processes that occur within the hyporheic zone
    corecore