8 research outputs found

    Muscle Characteristics and Substrate Energetics in Lifelong Endurance Athletes.

    Get PDF
    The goal of this study was to explore the effect of lifelong aerobic exercise (i.e., chronic training) on skeletal muscle substrate stores (intramyocellular triglyceride [IMTG] and glycogen), skeletal muscle phenotypes, and oxidative capacity (ox), in older endurance-trained master athletes (OA) compared with noncompetitive recreational younger (YA) athletes matched by frequency and mode of training. Thirteen OA (64.8 ± 4.9 yr) exercising 5 times per week or more were compared with 14 YA (27.8 ± 4.9 yr) males and females. IMTG, glycogen, fiber types, succinate dehydrogenase, and capillarization were measured by immunohistochemistry in vastus lateralis biopsies. Fat-ox and carbohydrate (CHO)-ox were measured by indirect calorimetry before and after an insulin clamp and during a cycle ergometer graded maximal test. V˙O2peak was lower in OA than YA. The OA had greater IMTG in all fiber types and lower glycogen stores than YA. This was reflected in greater proportion of type I and less type II fibers in OA. Type I fibers were similar in size, whereas type II fibers were smaller in OA compared with YA. Both groups had similar succinate dehydrogenase content. Numbers of capillaries per fiber were reduced in OA but with a higher number of capillaries per area. Metabolic flexibility and insulin sensitivity were similar in both groups. Exercise metabolic efficiency was higher in OA. At moderate exercise intensities, carbohydrate-ox was lower in OA but with similar Fat-ox. Lifelong exercise is associated with higher IMTG content in all muscle fibers and higher metabolic efficiency during exercise that are not explained by differences in muscle fibers types and other muscle characteristics when comparing older with younger athletes matched by exercise mode and frequency

    Separation of small metabolites and lipids in spectra from biopsies by diffusion-weighted HR-MAS NMR: a feasibility study.

    Get PDF
    High Resolution Magic Angle Spinning (HR-MAS) NMR allows metabolic characterization of biopsies. HR-MAS spectra from tissues of most organs show strong lipid contributions that are overlapping metabolite regions, which hamper metabolite estimation. Metabolite quantification and analysis would benefit from a separation of lipids and small metabolites. Generally, a relaxation filter is used to reduce lipid contributions. However, the strong relaxation filter required to eliminate most of the lipids also reduces the signals for small metabolites. The aim of our study was therefore to investigate different diffusion editing techniques in order to employ diffusion differences for separating lipid and small metabolite contributions in the spectra from different organs for unbiased metabonomic analysis. Thus, 1D and 2D diffusion measurements were performed, and pure lipid spectra that were obtained at strong diffusion weighting (DW) were subtracted from those obtained at low DW, which include both small metabolites and lipids. This subtraction yielded almost lipid free small metabolite spectra from muscle tissue. Further improved separation was obtained by combining a 1D diffusion sequence with a T2-filter, with the subtraction method eliminating residual lipids from the spectra. Similar results obtained for biopsies of different organs suggest that this method is applicable in various tissue types. The elimination of lipids from HR-MAS spectra and the resulting less biased assessment of small metabolites have potential to remove ambiguities in the interpretation of metabonomic results. This is demonstrated in a reproducibility study on biopsies from human muscle

    Exercise efficiency relates with mitochondrial content and function in older adults.

    Get PDF
    Chronic aerobic exercise has been shown to increase exercise efficiency, thus allowing less energy expenditure for a similar amount of work. The extent to which skeletal muscle mitochondria play a role in this is not fully understood, particularly in an elderly population. The purpose of this study was to determine the relationship of exercise efficiency with mitochondrial content and function. We hypothesized that the greater the mitochondrial content and/or function, the greater would be the efficiencies. Thirty-eight sedentary (S, n = 23, 10F/13M) or athletic (A, n = 15, 6F/9M) older adults (66.8 ± 0.8 years) participated in this cross sectional study. V˙O2peak was measured with a cycle ergometer graded exercise protocol (GXT). Gross efficiency (GE, %) and net efficiency (NE, %) were estimated during a 1-h submaximal test (55% V˙O2peak). Delta efficiency (DE, %) was calculated from the GXT. Mitochondrial function was measured as ATPmax (mmol/L/s) during a PCr recovery protocol with (31)P-MR spectroscopy. Muscle biopsies were acquired for determination of mitochondrial volume density (MitoVd, %). Efficiencies were 17% (GE), 14% (NE), and 16% (DE) higher in A than S. MitoVD was 29% higher in A and ATPmax was 24% higher in A than in S. All efficiencies positively correlated with both ATPmax and MitoVd. Chronically trained older individuals had greater mitochondrial content and function, as well as greater exercise efficiencies. GE, NE, and DE were related to both mitochondrial content and function. This suggests a possible role of mitochondria in improving exercise efficiency in elderly athletic populations and allowing conservation of energy at moderate workloads

    Hybrid fiber alterations in exercising seniors suggest contribution to fast-to-slow muscle fiber shift.

    Get PDF
    Human skeletal muscle is composed of a functional and metabolic continuum of slow (Type I) and fast fibers (IIa and IIx). Hybrid fibers co-expressing different myosin heavy chains are also present and seem to be more prominent in aging muscle. Their role is debated; hybrid fibers were reported either in a transitional state, between slow and fast fibers, or as fixed individual entities. This study examined the fate of hybrid fibers with an endurance exercise intervention in an elderly sedentary population. Twenty-two sedentary healthy elderly men and women underwent a 16-week supervised endurance exercise intervention. Eighteen endurance-trained age- and gender-matched volunteers served as controls. Fiber type distribution was determined by immunohistochemistry on vastus lateralis muscle biopsies pre-intervention and post-intervention. A total of 13840 fibers were analyzed. At baseline, a Type II dominant fiber profile was observed compared with the control group, with more Type IIa (P = 0.0301) and Type IIx fibers (P = 0.0328). Hybrid fibers represented almost 5% of total muscle fibers in both groups. There was no significant difference between groups (I-IIa, P = 0.6719 and IIa-IIx, P = 0.0998). Intervention triggered qualitative dynamics towards an increase in Type I, and decrease in Type II fibers, paralleled by an increase in I-IIa hybrids (P = 0.0301). The present study is, to our knowledge, the first to examine hybrid muscle fiber type adaptations to an endurance exercise intervention in the elderly. Hybrid fiber proportions did not differ between chronic sedentary state and chronic endurance-trained state. Exercise intervention increased Type I-IIa hybrid fibers along with shift dynamics in other fiber types suggesting the contribution of hybrid fiber to a fast-to-slow fiber type transition, eventually serving as intermediate reservoir from one monomorphic myosin heavy chain expressing fiber type to another. This finding favours the transitional theory regarding hybrid muscle fibers and exercise, crucial to understanding reversible mechanisms of sarcopenia and development of prevention measures

    Enhanced Respiratory Chain Supercomplex Formation in Response to Exercise in Human Skeletal Muscle.

    Get PDF
    Mitochondrial dysfunction is a hallmark of multiple metabolic complications. Physical activity is known to increase mitochondrial content in skeletal muscle, counteracting age-related decline in muscle function and protecting against metabolic and cardiovascular complications. Here, we investigated the effect of 4 months of exercise training on skeletal muscle mitochondria electron transport chain complexes and supercomplexes in 26 healthy, sedentary older adults. Exercise differentially modulated respiratory complexes. Complex I was the most upregulated complex and not stoichiometrically associated to the other complexes. In contrast to the other complexes, complex I was almost exclusively found assembled in supercomplexes in muscle mitochondria. Overall, supercomplex content was increased after exercise. In particular, complexes I, III, and IV were redistributed to supercomplexes in the form of I+III2+IV. Taken together, our results provide the first evidence that exercise affects the stoichiometry of supercomplex formation in humans and thus reveal a novel adaptive mechanism for increased energy demand

    Distinct patterns of skeletal muscle mitochondria fusion, fission and mitophagy upon duration of exercise training.

    Get PDF
    Healthy ageing interventions encompass regular exercise to prevent mitochondrial dysfunction, key player in sarcopenia pathogenesis. Mitochondrial biogenesis has been well documented, but mitochondrial remodelling in response to exercise training is poorly understood. Here we investigated fusion, fission and mitophagy before and after an exercise intervention in older adults. Skeletal muscle biopsies were collected from 22 healthy sedentary men and women before and after 4 months of supervised training. Eight lifelong trained age- and gender-matched volunteers served as positive controls. Transmission electron microscopy was used to estimate mitochondrial content. Western blotting and qRT-PCR were used to detect changes in specific proteins and transcripts. After intervention, mitochondrial content increased to levels of controls. While enhancement of fusion was prevalent after intervention, inhibition of fission and increased mitophagy were dominant in controls. Similarly to PARKIN, BCL2L13 content was higher in controls. The observed molecular adaptations paralleled long-term effects of training on physical fitness, exercise efficiency and oxidative capacity. This study describes distinct patterns of molecular adaptations in human skeletal muscle under chronic exercise training. After 16 weeks of exercise, the pattern was dominated by fusion to increase mitochondrial content to the metabolic demands of exercise. In lifelong exercise, the pattern was dominated by mitophagy synchronized with increased fusion and decreased fission, indicating an increased mitochondrial turnover. In addition to these temporally distinct adaptive mechanisms, this study suggests for the first time a specific role of BCL2L13 in chronic exercise that requires constant maintenance of mitochondrial quality

    Skeletal Muscle Mitochondrial and Lipid Droplet Volume Density: Validity of Electron Microscopy Point-counting Measurements

    No full text
    Mitochondrial (M) and lipid droplet (L) volume density (vd) are often used in exercise research. Vd is the volume of muscle occupied by M and L. The means of calculating these percents are accomplished by applying a grid to a 2D image taken with transmission electron microscopy; however, it is not known which grid best predicts these values. PURPOSE: To determine the grid with the least variability of Mvd and Lvd in human skeletal muscle. METHODS: Muscle biopsies were taken from vastus lateralis of 10 healthy adults, trained (N=6) and untrained (N=4). Samples of 5-10mg were fixed in 2.5% glutaraldehyde and embedded in EPON. Longitudinal sections of 60 nm were cut and 20 images were taken at random at 33,000x magnification. Vd was calculated as the number of times M or L touched two intersecting grid lines (called a point) divided by the total number of points using 3 different sizes of grids with squares of 1000x1000nm sides (corresponding to 1µm2), 500x500nm (0.25µm2) and 250x250nm (0.0625µm2). Statistics included coefficient of variation (CV), 1 way-BS ANOVA and spearman correlations. RESULTS: Mean age was 67 ± 4 yo, mean VO2peak 2.29 ± 0.70 L/min and mean BMI 25.1 ± 3.7 kg/m2. Mean Mvd was 6.39% ± 0.71 for the 1000nm squares, 6.01% ± 0.70 for the 500nm and 6.37% ± 0.80 for the 250nm. Lvd was 1.28% ± 0.03 for the 1000nm, 1.41% ± 0.02 for the 500nm and 1.38% ± 0.02 for the 250nm. The mean CV of the three grids was 6.65% ±1.15 for Mvd with no significant differences between grids (P>0.05). Mean CV for Lvd was 13.83% ± 3.51, with a significant difference between the 1000nm squares and the two other grids (P<0.05). The 500nm squares grid showed the least variability between subjects. Mvd showed a positive correlation with VO2peak (r = 0.89, p < 0.05) but not with weight, height, or age. No correlations were found with Lvd. CONCLUSION: Different size grids have different variability in assessing skeletal muscle Mvd and Lvd. The grid size of 500x500nm (240 points) was more reliable than 1000x1000nm (56 points). 250x250nm (1023 points) did not show better reliability compared with the 500x500nm, but was more time consuming. Thus, choosing a grid with square size of 500x500nm seems the best option. This is particularly relevant as most grids used in the literature are either 100 points or 400 points without clear information on their square size
    corecore