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Abstract

Background Human skeletal muscle is composed of a functional and metabolic continuum of slow (Type I) and fast fibers (IIa
and IIx). Hybrid fibers co-expressing different myosin heavy chains are also present and seem to be more prominent in aging
muscle. Their role is debated; hybrid fibers were reported either in a transitional state, between slow and fast fibers, or as
fixed individual entities. This study examined the fate of hybrid fibers with an endurance exercise intervention in an elderly
sedentary population.
Methods Twenty-two sedentary healthy elderly men and women underwent a 16-week supervised endurance exercise
intervention. Eighteen endurance-trained age- and gender-matched volunteers served as controls. Fiber type distribution
was determined by immunohistochemistry on vastus lateralis muscle biopsies pre-intervention and post-intervention.
Results A total of 13840 fibers were analyzed. At baseline, a Type II dominant fiber profile was observed compared with the
control group, with more Type IIa (P = 0.0301) and Type IIx fibers (P = 0.0328). Hybrid fibers represented almost 5% of total
muscle fibers in both groups. There was no significant difference between groups (I–IIa, P = 0.6719 and IIa–IIx, P = 0.0998).
Intervention triggered qualitative dynamics towards an increase in Type I, and decrease in Type II fibers, paralleled by an
increase in I–IIa hybrids (P = 0.0301).
Conclusions The present study is, to our knowledge, the first to examine hybrid muscle fiber type adaptations to an
endurance exercise intervention in the elderly. Hybrid fiber proportions did not differ between chronic sedentary state and
chronic endurance-trained state. Exercise intervention increased Type I–IIa hybrid fibers along with shift dynamics in other
fiber types suggesting the contribution of hybrid fiber to a fast-to-slow fiber type transition, eventually serving as intermediate
reservoir from one monomorphic myosin heavy chain expressing fiber type to another. This finding favours the transitional
theory regarding hybrid muscle fibers and exercise, crucial to understanding reversible mechanisms of sarcopenia and
development of prevention measures.
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Introduction

Human muscles are composed of three main muscle fibers,
which are defined by their functional and biochemical charac-
teristics such as their content in myosin heavy chain (MHC)

isoforms.1 The first is Type I fibers (MHC-I), which are typically
slow-twitch fibers with a high myoglobin content and high ox-
idative metabolism. The two others are Type IIa (MHC-IIa)
and Type IIx fibers (MHC-IIx), which are fast-twitch fibers with
lower myoglobin content and a more anaerobic glycolytic
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metabolism, sometimes referred together collectively as Type
II fibers. In this functional and metabolic continuum, Type IIa
fibers have an intermediate phenotype between Type I and
Type IIx.1

In addition to these monomorphic MHC expressing fiber
types, skeletal muscle contains hybrid fibers, which co-express
various MHC isoforms in different combinations and propor-
tions.1,2 Their origin and role are debated. Previous research
suggested that these fibers might either represent fibers in a
transitional state between different monomorphic MHC
expressing fiber types, undergoing progressive replacement
of one myosin isoform with another,3–6 or fixed individual
entities conferring mixed mechanical properties to the muscle
in order to fine tune its kinetics.7–9

Hybrid fiber adaptation to physical training is yet to be
understood. Previous intervention studies reported variations
depending on the type and volume of exercise. The fact that
exercise protocols were different partly explains why it is
difficult to identify an adaptation pattern. For example, in
the vastus lateralis muscle of healthy young sedentary men,
8 weeks of sprint training did not induce changes in hybrid
fibers,9 whereas an increase in Type I–IIa hybrid fibers was
observed in resistance training,3,6 with or without a concom-
itant decrease in IIa–IIx hybrids.3,4 Endurance training for
13 weeks showed a decrease in I–IIa hybrid and total hybrid
fibers with no change in IIa–IIx fibers in the gastrocnemius.10

Cross-sectional studies report that endurance-trained
runners have higher proportions of I–IIa hybrids,11 sometimes
over 30%,12 and lower proportions of IIa–IIx hybrid fibers as
compared with non-runners.11,13

In contrast to exercise, physically inactive muscle has shown
a high proportion of all hybrid fibers.6,8 Studies in young
sedentary volunteers have reported 27% of fibers being hybrid
in the gastrocnemius8 and about 19% of IIa–IIx fibers in the
vastus lateralis.12 The same is true regarding aging muscle, in
which hybrid fiber proportions have been reported higher
than in the young,14,15 with over 50% of the muscle fibers
co-expressing multiple MHC isoforms in the vastus
lateralis.14,16 It is well known that reduction in the number
and size of both slow and fast monomorphic MHC expressing
fibers contributes to the loss of muscle mass due to aging.17,18

Exercise in this context induces muscle fiber hypertrophy and
a decrease in the proportion of Type IIx fibers, with or without
an increase in other monomorphic fibers.19,20 A decrease in all
hybrid fiber isoforms was shown in the vastus lateralis of
seven healthy septuagenarians with resistance training.21 To
our knowledge, no investigations have examined the fate of
hybrid fibers with an endurance exercise intervention in an
elderly sedentary population.

Given the importance of muscle health in aging, particularly
in the quest to prevent sarcopenia, the purpose of this study
was to investigate the proportion of hybrid muscle fibers in a
sedentary healthy elderly population as well as its adaptation
to an endurance exercise intervention. We hypothesized that

hybrid fibers are related to muscle undergoing functional trans-
formation, particularly that these fibers take part in the transi-
tion to a more aerobic profile with endurance exercise in
muscle of 60- to 80-year-old healthy volunteers.

Materials and methods

Study design and population

A pre–post study design was used to examine the adapta-
tion of hybrid muscle fibers to endurance exercise interven-
tion in a sedentary population (S, n = 22) between 60 and
80 years old. Endurance-trained volunteers matched by
gender and age served as controls (C, n = 18). Recruitment
was done through local newspapers and information flyers.
To be included, volunteers had to be healthy, non-smoker,
and stable weight. Sedentary was defined as engaging in
<20 min of a structured exercise session per week.
Endurance-trained was defined as engaging in three or
more >20-min periods of structured aerobic exercise
sessions per week for >1 year preceding study enrollment.
Volunteers with chronic co-morbidities or medications
known to affect muscle metabolism, such as diabetes, were
excluded. The Ethics Committee of the Canton of Vaud
accepted the research protocol, and all volunteers gave
written informed consent.

Clinical outcome measures

Height was measured with a wall-mounted stadiometer.
Weight was measured using a calibrated digital scale (Seca,
Semur-en-Auxois, France) in hospital gown and fasted state.
Lean bodymass (LBM)was determined by dual energy X-ray ab-
sorptiometry (DiscoveryA, Hologic Inc., Marlborough, MA).
Peak oxygen consumption (V̇O2peak) and heart rate (HR) were
determined with a graded exercise test on an electronically
braked cycle ergometer (Lode B.V., Groningen, The
Netherlands). Oxygen consumption was computed with indi-
rect calorimetry (Metalyzer3B, Cortex GmbH, Leipzig,
Germany). All subjects performed the test until volitional
exhaustion orwhen one of the American College of SportsMed-
icine established criteria for maximal testing was reached.22

These measures were performed in tightly controlled condi-
tions as described previously.23 The exact same measurements
in the same conditions were performed after intervention.

Exercise training intervention

Sedentary subjects followed an exercise training intervention
as previously reported.23 It consisted of a moderate-intensity
aerobic protocol of tri-weekly supervised exercise sessions
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over 16 weeks. Each session was progressively increased from
30 to 60min. Half of the training was performed on a station-
ary bike and the other half on a treadmill (mostly walking or
some light jogging). Exercise intensity was progressive and
adapted to each subject based on his or her peak HR to
achieve 60–75% of the maximal HR deduced from the
baseline V̇O2peak test. Exercise prescription was adapted at
the midpoint of the intervention with a submaximal ergome-
ter test as described in details by Dubé et al.24 HR monitors
(Polar Electro Oy, Kempele, Finland) and exercise logs were
utilized to monitor intensity.

Muscle biopsies

Percutaneous muscle biopsies were obtained from the vastus
lateralis under local anaesthesia as previously described.25,26

Prerequisites to biopsies included no exercise for 72 h and an
overnight stay with a controlled dinner in the evening prior to
the biopsy followed by fasting until the biopsy was taken at
8 a.m. After trimming of visible adipose tissue with a dissecting
microscope (MZ6, Leica Microsystems, Wetzlar, Germany), 3–4
portions (~30 mg each, wet weight) were mounted on a cork
with embedding resin (Shandon Cryomatrix OCT, Thermo
Fisher Scientific, Waltham, MA) oriented so that the muscle fi-
bers were completely embedded and perpendicular to the
cork. The samples were then immediately flash frozen in liquid
nitrogen-cooled isopentane and stored at �80°C prior to
cryosectioning.27,28

Immunohistochemistry

Pre-intervention and post-intervention samples for the
same subject were simultaneously cryosectioned (10-μm
sections at �30°C; microtome Leica CM3050 S, Leica
Biosystems), placed on the same slide and air dried for
15 min before being fixed in phosphate-buffered saline
(PBS) containing 3.7% of formaldehyde solution (Sigma-Al-
drich, St Louis, MO) for 1 h at 4°C. Sections were incubated
overnight at 4°C in a solution of primary antibodies (Ab)
against MHC Types I (MHC7 sc-53089, Santa Cruz, Iowa
City, IA; dilution 1:200) and IIa (MHC2 sc-53095, Santa Cruz;
dilution 1:100) diluted in PBS containing 2% of bovine se-
rum albumin (BSA, Sigma-Aldrich). Sections were then
rinsed 3 × 5 min in PBS and incubated for 1 h at room tem-
perature in a solution of fluorescent-conjugated secondary
Ab against various immunoglobulin subtypes (Ab anti-IgM-
R AF 594, Jackson ImmunoResearch Laboratories, Inc., West
Grove, PA; dilution 1:800; Ab anti-IgG-fluorescein isothiocy-
anate (FITC) sc-2010, Santa Cruz; dilution 1:250) diluted in
PBS containing 2% of BSA. After a final rinse of 3 × 5 min
in PBS containing 0.5% of BSA, sections were dried and
mounted using mounting medium (UltraCruz, Santa Cruz).

Image acquisition

All images were captured with a black and white digital cam-
era on an upright fluorescent microscope (Eclipse 90i, Nikon
Instruments Europe BV, Amsterdam, The Netherlands) at
×20 magnification using Image-Pro Plus 7.0 software (Media
Cybernetics, Rockville, MD). For every field pictured, photos
were taken with fluorescent Cy3 and FITC settings. A merge
of these pictures with color attribution was generated.
Images were saved in a de-identified manner to allow blinded
analysis.

Image quantification

Image-Pro Plus 7.0 software (Media Cybernetics) was used
to identify and map fiber types on the color attributed
merged histology images based on the corresponding fluo-
rescent channels: Type I = positive in Cy3 channel and neg-
ative in FITC channel; Type IIa = negative in Cy3 channel
and positive in FITC channel; Type IIx = negative in Cy3
and FITC channels; hybrid I–IIa = intermediate in Cy3 chan-
nel and in FITC channel; and hybrid IIa–IIx = negative in
Cy3 channel and intermediate in FITC channel. This map-
ping enabled classifying and quantifying precisely each type
of fiber. A representative image with color attribution is
shown in Figure 1. To verify this classification in regard to
the fact that hybrid fibers have dual or intermediate stain-
ing, a subset of samples was used to perform single MHC
staining (including Type IIx) on consecutive serial sections.
This allowed assessing that the subtraction technique was
specific and did not lead to Ab-related overlapping staining,
confirming the identification of hybrid fibers expressing
multiple MHC isoforms.

Computations

Muscle fiber types are expressed as relative proportions,
total being 100%. An ‘aerobic score’ (AS) was generated
according to fiber-specific oxidative metabolic properties.
This was in order to evaluate exercise adaptations in the
muscle’s global aerobic profile resulting from cumulative
changes in fiber types. To obtain the AS, relative fiber pro-
portions were multiplied according to aerobic capacity by 1
(Type I), 0.75 (Type I–IIa), 0.5 (Type IIa), 0.25 (Type IIa–IIx),
or 0 (Type IIx).

Statistical procedures

Analyses were achieved for each individual samples in each
group. Baseline group comparisons were performed using
an independent t-test. Welch’s correction was used if the
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variances were not equal (tested with the following:
O’Brien, Brown-Forsythe, Levene, and Bartlett). Pre-
intervention vs. post-intervention differences were tested
using a paired t-test, thus taking into account each
individual baseline sample as its own control. Clinical out-
come measures are represented as mean ± SD. Fiber pro-
portions and AS are represented as mean ± SEM. All
analyses were performed with JMP 11 software (SAS Insti-
tute Inc., Cary, NC). Significance was set at P < 0.05.

Results

Study population and clinical outcome measures

Twenty-two S and 18 C were included in this study. Both
groups were comparable in terms of gender, age, and LBM
at baseline (Table 1). S had a higher weight (+11.9%,
P = 0.0163) and body mass index (BMI, +6.5%, P = 0.0216),
and lower V̇O2peak corrected for LBM (V̇O2peak/LBM) than

Figure 1 Representative muscle biopsy section with immunohistochemical staining. (A) Myosin heavy chain (MHC)-I expressing fibers are revealed
with Cy3 fluorescence. (B) MHC-IIa expressing fibers are revealed with fluorescein isothiocyanate (FITC) fluorescence. (C) Merged image with color at-
tribution: red for MHC-I (Cy3), green for MHC-IIa (FITC), no color (black) for MHC-IIx (not present in this image), and mix of colors for hybrid fibers co-
expressing multiple MHC isoforms (*).

Table 1. Study population characteristics

Endurance exercise Trained controls

Before After

n subjects 22 20 18
Men/women 11/11 10/10 7/11
Age (years) 65.50 ± 3.91 67.78 ± 5.86
Weight (kg) 68.59 ± 10.95* 68.72 ± 11.22 61.27 ± 7.33
LBM (kg) 48.17 ± 9.74 49.30 ± 10.12§ 46.30 ± 7.64
BMI (kg/m2) 23.41 ± 2.14* 23.37 ± 2.33 21.98 ± 1.63
V̇O2peak (mL/min/LBM kg) 40.69 ± 6.02* 44.18 ± 5.89§ 45.88 ± 7.79

BMI, body mass index; LBM, body mass; V̇O2peak, peak oxygen consumption.
Data are means ± SD.
*P < 0.05 vs. ‘trained controls’ by independent t-test.
§P < 0.05 vs. ‘before endurance exercise’ by paired t-test.
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C (�11.3%, P = 0.0274). The exercise intervention induced a
1.74 ± 0.75% (SEM) increase in LBM (P = 0.0263) and a
9.38 ± 2.24% increase in V̇O2peak/LBM (P = 0.0007), while
there was no change in weight (�1.18 ± 0.75%, P = 0.1305)
or BMI (�1.16 ± 0.75%, P = 0.1545) (Table 1). Two volunteers
were not included in the interventional data analyses due to
study drop out for time constraint and religious fasting (one
woman and one man).

Muscle biopsies

Muscle biopsies were equally distributed in each group
(S = 21 vs. C = 18), including S pre-exercise and post-exercise
intervention biopsies (21 vs. 19). In addition to the two S
dropouts that did not have a post-intervention biopsy, 1
pre-intervention biopsy and 1 post-intervention biopsy were
poorly interpretable for technical reasons (both women).
Eighteen pre-intervention and post-intervention matched
biopsy pairs were therefore included in the interventional
data analysis (8 women and 10 men).

The total number of fibers analyzed was 13840 (4668 pre-
intervention, 4393 post-intervention in S, and 4419 in C). On
average, 222 ± 6 fibers per individual sample were analyzed
at baseline (range 136–409), and 231 ± 7 fibers per individual
sample were analyzed at post-intervention (range 160–284).

Muscle fiber type and aerobic profile analysis

At baseline, S showed a Type II dominant fiber profile, with
more Type IIa (P = 0.0301) and Type IIx fibers (P = 0.0328)
than C (Table 2). In contrast, C showed a Type I dominant
fiber profile, with more Type I fibers than S (P = 0.0021). This
was consistent with the AS, which was lower in S than C
(P = 0.0017). No significant difference between the two
groups was noted in hybrid fibers I–IIa (P = 0.6719) and
IIa–IIx (P = 0.0998). Across all groups, IIa–IIx hybrid fibers
were significantly higher than I–IIa hybrid fibers (P < 0.0001).

Looking at the overall picture (Figure 2), endurance exer-
cise intervention triggered qualitative dynamics towards an

increase in Type I, and decrease in Type II fibers, paralleled
by an increase in hybrid fibers. The proportion of I–IIa hybrid
fibers increased by 402% (P = 0.0301). Changes in the individ-
ual proportion of each other fiber type were not statistically
significant: Types I (+5.33%, P = 0.7937), IIa (�1.84%,
P = 0.7902), IIx (�38.4%, P = 0.2912), and IIa–IIx (+16%,
P = 0.6729). The increase of AS observed was not statistically
significant (+4.17 ± 4.33%, P = 0.5529).

Discussion

The present study investigated hybrid muscle fibers in
sedentary elderly volunteers and the effect of 16 weeks of
moderate-intensity endurance training on muscle fiber
composition. Exercise intervention increased Type I–IIa
hybrid fibers along with qualitative shifts in other fiber types
towards slow-twitch fibers. These findings suggest the contri-
bution of hybrid fibers to a fast-to-slow fiber type transition
along the metabolic and functional fiber type continuum.
Exercise intervention significantly increased V̇O2peak/LBM,
illustrating the increase in aerobic capacity. LBM was also
significantly increased with an average gain slightly above
1 kg, which is clinically significant and comparable with
interventions geared at treating sarcopenia.29,30

Baseline muscle fiber profile was less aerobic in S than C.
This was confirmed by the AS and is consistent with what
was observed between inactive and endurance-trained youn-
ger individuals.11 The global picture of monomorphic MHC
muscle fiber distribution in S was thus the opposite image
of the fiber distribution in C, as the profile of S was fast Type
II fiber dominant, whereas the profile of C was slow Type I
fiber dominant. After intervention, our 60- to 79-year-old
previously sedentary volunteers did not show significant
changes in monomorphic MHC fiber types but revealed a sta-
tistically significant exercise-induced increase in hybrid I–IIa
fibers, which was accompanied by a general qualitative shift
from fast glycolytic towards slow oxidative fibers (Figure 2).
This histological snapshot after 16 weeks of training was com-
patible with a training-dependent response of fast-to-slow

Table 2. Fiber type distribution determined from immunohistochemistry and relative aerobic score

Endurance exercise Trained controls

Before After

Fiber Type I (%) 43.95 ± 2.76* 46.29 ± 2.53 59.80 ± 3.85
Fiber Type I–IIa (%) 0.15 ± 0.09 0.78 ± 0.30§ 0.20 ± 0.07
Fiber Type IIa (%) 45.29 ± 2.08* 44.46 ± 1.73 36.40 ± 3.30
Fiber Type IIa–IIx (%) 3.57 ± 0.92 4.14 ± 1.03 1.62 ± 0.69
Fiber Type IIx (%) 7.04 ± 1.86* 4.34 ± 1.66 1.97 ± 1.31
Aerobic score (arbitrary unit) 60.02 ± 2.32* 62.54 ± 2.14 72.44 ± 2.82

Data are means ± SEM.
*P < 0.05 vs. ‘trained controls’ by independent t-test.
§P < 0.05 vs. ‘before endurance exercise’ by paired t-test.

Shift of muscle fibers in exercise-trained seniors 691

Journal of Cachexia, Sarcopenia and Muscle 2019; 10: 687–695
DOI: 10.1002/jcsm.12410



fiber types over time, which is the premise of more consistent
functional and morphological changes. This was indeed
shown in our previous work using a more stringent exercise
schedule (up to five weekly training sessions vs. three weekly
sessions in the present work),27 which disclosed an exercise-
induced 11% increase in Type I fibers in overweight and
obese elderly individuals. Similarly, Pruchnic et al.28 observed
a 4.1% increase in Type I fibers with a 12-week endurance ex-
ercise protocol in an overweight population. Other endurance
exercise interventional studies in healthy 60- to 75-year-old
sedentary subjects observed that exercise induced a decrease
in Type IIx fibers, with or without increase in Type IIa, but
with no significant changes in the proportions of Type I fibers
in gastrocnemius and vastus lateralis.19,20 While these studies
disclose decreases in IIx fibers, they did not provide detailed
analyses of hybrid fibers, which might have acted as interme-
diate between a fast-to-slow fiber shift.

Hybrid fibers did not significantly differ in S vs. C, which is
in agreement with several previous cross-sectional studies in
a younger healthy population reporting a similar proportion
of hybrid fibers in both the untrained and the trained.8,12 This
was expected, as the two groups in our study were either
chronically sedentary or chronically active in the cross-
sectional comparison (in pre-intervention). Thus, their mus-
cles could be considered respectively in a steady state rather
than in functional transformation. Similarly, St-Jean-Pelletier

et al.15 have shown recently that proportions of I–IIa and
IIa–IIx fibers were not statistically different between active,
sedentary, or frail 65+-year-old seniors. This was not the case
of a bed-rest intervention that has shown an increase in both
I–IIa and IIa–IIx fibers in the vastus lateralis6 or with our
exercise intervention that resulted in an increase in hybrid
I–IIa fibers. These results are suggestive of an intermediary
transition reservoir consistent with the dynamics of shift from
fast glycolytic towards slow oxidative monomorphic MHC
fibers (Figure 2).

Volume, intensity, frequency, mode, and duration are all
endurance exercise training attributes influencing skeletal
muscle responses to intervention. For example, Kohn
et al.11 reported that 20- to 25-year-old runners had higher
proportions of Type I fibers and lower proportions of Type
IIx and hybrid IIa–IIx fibers than non-runners. They also
showed that exercise volume and running distance were
positively related to the proportion of hybrid Type I–IIa fibers
and negatively related to the proportion of IIa–IIx fibers. Like-
wise, Trappe et al.10 have shown that there was a decrease in
relative quantity of hybrid Type I–IIa fibers to the benefit of
an increase in relative quantity of Type I fibers after 13 weeks
of training for a marathon in 22-year-olds. While several
evidence, including the present study, point towards a
fast-to-slow fiber type shift induced by endurance exercise,
we did not measure statistically significant increases in Type

Figure 2 Fiber type distributions and exercise-induced shift from fast glycolytic towards slow oxidative fibers. Bars are means ± SEM. *P < 0.05 vs.
‘trained controls’ by independent t-test. §P < 0.05 vs. ‘before endurance exercise’ intervention by paired t-test.
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I fibers in our subjects. It is possible that our moderate-
intensity exercise routine proposed for general health in
60- to 80-year-old volunteers was not long or intense enough
to create significant increases in Type I fibers. On the other
hand, this allowed us to capture the likely transient character
of hybrid fibers. Taken together, these observations represent
complementary snapshots of a similar phenomenon in which
hybrid fibers, in response to endurance exercise, ensure the
progressive passage along the continuum between
fast-to-slow monomorphic MHC expressing fibers.

The purpose of hybrid fibers in human muscle is debated.
The MHC composition of hybrid fibers has been theorized to
be a specialized group providing muscle with a wide spectrum
of contractile properties, thus enabling to fine tune muscle
power efficiency and resistance to fatigue.7–9 This theory was
supported by Neunhauserer et al.7who identified three groups
with different kinetics (fast, slow, and transition zone) when
studying fiber Types I, IIa, and their related I–IIa hybrid types
in humans. The group with intermediate properties was com-
posed of specific Type I fibers and MHC-I dominant hybrid fi-
bers (7:3 ratio) rather than a transitional spectrum of hybrid
fiber type. It has also been theorized that hybrid fibers play a
transitional role between two monomorphic MHC expressing
fiber types.15 This theory was supported by several studies pre-
viously mentioned in which either a slow-to-fast fiber transition
was shown with bed-rest and resistance exercise intervention,
or a fast-to-slow fiber transition with endurance exercise inter-
vention.3,4,6,10 In the present study, the general adaptation of
fiber types to exercise suggests a transition from fast-to-slow fi-
bers with an increase in hybrid Type I–IIa fibers favoring the
transitional theory. Only a careful time-course study with mul-
tiple biopsies would be able to ascertain the exact kinetics of
this shift, which was beyond the scope of this work. Our obser-
vations also raise the question of the origin of hybrid fibers in
the transforming muscle. Whether they are pre-existing MHC
monomorphic fibers undergoing MHC protein turnover and
modifications of gene expression to adapt to new conditions
as suggested by previous data,5 or de novo cells in the process
of adjusting to exercise-related mechanic and metabolic de-
mand of the muscle, is poorly understood.

Determining muscle fiber profiles may be subject to
technical pitfalls that may account for different results. In
the present immunohistochemistry study, hybrid fibers
represented almost 5% of total muscle fibers at baseline,
which was higher than the <0.5% reported in the gastrocne-
mius of healthy 60- to 70-year-olds determined by myosin
adenosine triphosphatase histochemistry.19 Staron et al.31

suggested that immunohistochemistry may generate a
misclassification of hybrid fibers, especially those that express
only a small amount of one of the MHC isoforms, leading to
an underestimation of hybrid fibers. An important consider-
ation is that we used two Ab as reported by multiple
authors25,27,28,32–36 and confirmed the specificity of our sub-
traction technique to minimize interpretation biases. Three

Ab have been used in a recent cross-sectional study by
St-Jean-Pelletier et al.15 Similarly to our results, the authors
report no difference in the proportion of I–IIa and IIa–IIx
hybrid fibers between groups of sedentary or active 65 years
and older individuals. The comparison of possible biases
between these two methods is yet to be performed.

In 68 years and older elderly, greater proportions of hybrid
fibers (up to 50%) were reported when determined by
electrophoretic analysis of single cells.14,16,20 Andersen
et al.37 measured a high proportion of hybrid fibers (close to
one-third) in human subjects ranging from 85 to 97 years
old by MHC electrophoresis, which was not found with histo-
chemistry analysis. They thus suggest fiber type shifting along
the length of the fiber due to different MHC isoform expres-
sion within myonuclear domains. The greater proportion of
hybrid fibers found by electrophoretic techniques is most
probably due to the fact that it examines the MCH expressed
in a total muscle fiber, whereas immunohistochemistry exam-
ines the MHC expressed in a fiber cross-section, thus in a sin-
gle myonuclear domain.37 Nevertheless, MHC electrophoresis
pitfalls are not insignificant either as results depend on several
variables like run times, voltage settings, buffer ingredients,
staining and gel settings. For example, Bamman et al.38 have
shown that a 1% difference in polyacrylamide separating gel
could hinder myosin band analysis.

In the present study, the large number of fiber cross-
sections examined, close to 1400, may offset, at least in part,
the limitations alluded to above. Moreover, one main
advantage of muscle fiber histochemical identification is that
it enables investigations without denaturing cells, as for phe-
notypic and metabolic properties of fibers. In addition, while
different muscles exhibit different fiber type profiles, this
study focused on vastus lateralis, which is a primordial mus-
cle for activities of daily living and thus has major implication
in the context of aging muscle and sarcopenia. Therefore,
without an ultimate methodology to integrate all muscle cell
characteristics in realistic in vivo three-dimensional imaging,
the present results are likely to present the picture of the
dynamics of exercise-induced muscle fiber type transition.
Future work examining the effect of an exercise protocol on
fiber type composition, specifically hybrid fibers, should
include multiple serial time-course biopsies with multiple
fiber type identification methods to confirm the results.

In conclusion, the present study is the first to examine
hybrid muscle fiber type adaptations to endurance exercise
in 60- to 79-year-old elderly. Hybrid fiber proportions were
not different in the chronically sedentary than the chronically
active group, although their respective dominant monomor-
phic MHC expressing fiber type profile was a mirror image
of one another (fast vs. slow dominant). Exercise interven-
tion increased Type I–IIa hybrid fibers along with a compre-
hensive dynamics in other fiber types suggesting hybrid
contribution to a fast-to-slow fiber type transition in a
communicant-vessel-like manner, the hybrid fibers
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eventually serving as intermediate transition reservoirs from
one monomorphic MHC expressing cell type to another. This
results in one more step towards favouring the transitional
theory regarding hybrid muscle fibers and exercise, a key
to understanding reversible mechanisms for sarcopenia and
development of therapeutic and preventive measures. More
research is needed to fully understand the underlying
mechanisms and implications of hybrid fibers in transforming
muscle. Future work on the multiple interlinked actors likely
to be involved in this process—including motor unit plasticity
efficiency and patterns as well as molecular and gene
expression pathways (e.g. MCH protein half-life and replace-
ment)23,39–42—will be critical to develop novel strategies to
improve functional capacity at all ages.
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