143 research outputs found

    Hardy's paradox and violation of a state-independent Bell inequality in time

    Get PDF
    Tests such as Bell's inequality and Hardy's paradox show that joint probabilities and correlations between distant particles in quantum mechanics are inconsistent with local realistic theories. Here we experimentally demonstrate these concepts in the time domain, using a photonic entangling gate to perform nondestructive measurements on a single photon at different times. We show that Hardy's paradox is much stronger in time and demonstrate the violation of a temporal Bell inequality independent of the quantum state, including for fully mixed states.Comment: Published Version, 4 pages, 3 figures. New, more boring titl

    At-risk mental state for psychosis : identification and current treatment approaches

    Get PDF
    © The Royal College of Psychiatrists 2016. The concept of an ‘at-risk mental state’ for psychosis arose from previous work attempting to identify a putative psychosis prodrome. In this article we summarise the current criteria used to identify ‘at-risk’ individuals, such as the ultra-highrisk (UHR) criteria, and the further identification of important clinical risk factors or biomarkers to improve prediction of who might develop a psychotic disorder. We also discuss important ethical issues in classifying and treating at-risk individuals, current treatment trials in this area and what treatment current services can offer

    Entanglement-free certification of entangling gates

    Get PDF
    Not all quantum protocols require entanglement to outperform their classical alternatives. The nonclassical correlations that lead to this quantum advantage are conjectured to be captured by quantum discord. Here we demonstrate that discord can be explicitly used as a resource: certifying untrusted entangling gates without generating entanglement at any stage. We implement our protocol in the single-photon regime, and show its success in the presence of high levels of noise and imperfect gate operations. Our technique offers a practical method for benchmarking entangling gates in physical architectures in which only highly-mixed states are available.Comment: 5 pages, 2 figure

    Enhancing quantum transport in a photonic network using controllable decoherence

    Get PDF
    Transport phenomena on a quantum scale appear in a variety of systems, ranging from photosynthetic complexes to engineered quantum devices. It has been predicted that the efficiency of quantum transport can be enhanced through dynamic interaction between the system and a noisy environment. We report the first experimental demonstration of such environment-assisted quantum transport, using an engineered network of laser-written waveguides, with relative energies and inter-waveguide couplings tailored to yield the desired Hamiltonian. Controllable decoherence is simulated via broadening the bandwidth of the input illumination, yielding a significant increase in transport efficiency relative to the narrowband case. We show integrated optics to be suitable for simulating specific target Hamiltonians as well as open quantum systems with controllable loss and decoherence.Comment: 6 pages, 3 figure

    Experimental simulation of closed timelike curves

    Get PDF
    Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einstein's field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxes can be resolved, leaving closed timelike curves consistent with relativity. The study of these systems therefore provides valuable insight into nonlinearities and the emergence of causal structures in quantum mechanics-essential for any formulation of a quantum theory of gravity. Here we experimentally simulate the nonlinear behaviour of a qubit interacting unitarily with an older version of itself, addressing some of the fascinating effects that arise in systems traversing a closed timelike curve. These include perfect discrimination of non-orthogonal states and, most intriguingly, the ability to distinguish nominally equivalent ways of preparing pure quantum states. Finally, we examine the dependence of these effects on the initial qubit state, the form of the unitary interaction and the influence of decoherence

    Niches for Species, a multi-species model to guide woodland management: An example based on Scotland's native woodlands

    Get PDF
    Designating and managing areas with the aim of protecting biodiversity requires information on species distributions and habitat associations, but a lack of reliable occurrence records for rare and threatened species precludes robust empirical modelling. Managers of Scotland’s native woodlands are obliged to consider 208 protected species, which each have their own, narrow niche requirements. To support decision-making, we developed Niches for Species (N4S), a model that uses expert knowledge to predict the potential occurrence of 179 woodland protected species representing a range of taxa: mammals, birds, invertebrates, fungi, bryophytes, lichens and vascular plants. Few existing knowledge-based models have attempted to include so many species. We collated knowledge to define each species’ suitable habitat according to a hierarchical habitat classification: woodland type, stand structure and microhabitat. Various spatial environmental datasets were used singly or in combination to classify and map Scotland’s native woodlands accordingly, thus allowing predictive mapping of each species’ potential niche. We illustrate how the outputs can inform individual species management, or can be summarised across species and regions to provide an indicator of woodland biodiversity potential for landscape scale decisions. We tested the model for ten species using available occurrence records. Although concordance between predicted and observed distributions was indicated for nine of these species, this relationship was statistically significant in only five cases. We discuss the difficulties in reliably testing predictions when the records available for rare species are typically low in number, patchy and biased, and suggest future model improvements. Finally, we demonstrate how using N4S to synthesise complex, multi-species information into an easily digestible format can help policy makers and practitioners consider large numbers of species and their conservation needs

    Pre-exercise carbohydrate or protein ingestion influences substrate oxidation but not performance or hunger compared with cycling in the fasted state

    Get PDF
    Nutritional intake can influence exercise metabolism and performance, but there is a lack of research comparing protein-rich pre-exercise meals with endurance exercise performed both in the fasted state and following a carbohydrate-rich breakfast. The purpose of this study was to determine the effects of three pre-exercise nutrition strategies on metabolism and exercise capacity during cycling. On three occasions, seventeen trained male cyclists (VO2peak 62.2 ± 5.8 mL·kg−1·min−1, 31.2 ± 12.4 years, 74.8 ± 9.6 kg) performed twenty minutes of submaximal cycling (4 × 5 min stages at 60%, 80%, and 100% of ventilatory threshold (VT), and 20% of the difference between power at the VT and peak power), followed by 3 × 3 min intervals at 80% peak aerobic power and 3 × 3 min intervals at maximal effort, 30 min after consuming a carbohydrate-rich meal (CARB; 1 g/kg CHO), a protein-rich meal (PROTEIN; 0.45 g/kg protein + 0.24 g/kg fat), or water (FASTED), in a randomized and counter-balanced order. Fat oxidation was lower for CARB compared with FASTED at and below the VT, and compared with PROTEIN at 60% VT. There were no differences between trials for average power during high-intensity intervals (367 ± 51 W, p = 0.516). Oxidative stress (F2-Isoprostanes), perceived exertion, and hunger were not different between trials. Overall, exercising in the overnight-fasted state increased fat oxidation during submaximal exercise compared with exercise following a CHO-rich breakfast, and pre-exercise protein ingestion allowed similarly high levels of fat oxidation. There were no differences in perceived exertion, hunger, or performance, and we provide novel data showing no influence of pre-exercise nutrition ingestion on exercise-induced oxidative stress

    Does repeatedly viewing overweight versus underweight images change perception of and satisfaction with own body size?

    Get PDF
    Body dissatisfaction is associated with subsequent eating disorders and weight gain. One-off exposure to bodies of different sizes changes perception of others' bodies, and perception of and satisfaction with own body size. The effect of repeated exposure to bodies of different sizes has not been assessed. We randomized women into three groups, and they spent 5 min twice a day for a week completing a one-back task using images of women modified to appear either under, over, or neither over- nor underweight. We tested the effects on their perception of their own and others' body size, and satisfaction with own size. Measures at follow-up were compared between groups, adjusted for baseline measurements. In 93 women aged 18–30 years, images of other women were perceived as larger following exposure to underweight women (and vice versa) (p < 0.001). There was no evidence for a difference in our primary outcome measure (visual analogue scale own size) or in satisfaction with own size. Avatar-constructed ideal (p = 0.03) and avatar-constructed perceived own body size (p = 0.007) both decreased following exposure to underweight women, possibly due to adaptation affecting how the avatar was perceived. Repeated exposure to different sized bodies changes perception of the size of others' bodies, but we did not find evidence that it changes perceived own size

    Petrologic and petrophysical evaluation of the Dallas Center Structure, Iowa, for compressed air energy storage in the Mount Simon Sandstone.

    Full text link
    The Iowa Stored Energy Plant Agency selected a geologic structure at Dallas Center, Iowa, for evaluation of subsurface compressed air energy storage. The site was rejected due to lower-than-expected and heterogeneous permeability of the target reservoir, lower-than-desired porosity, and small reservoir volume. In an initial feasibility study, permeability and porosity distributions of flow units for the nearby Redfield gas storage field were applied as analogue values for numerical modeling of the Dallas Center Structure. These reservoir data, coupled with an optimistic reservoir volume, produced favorable results. However, it was determined that the Dallas Center Structure cannot be simplified to four zones of high, uniform permeabilities. Updated modeling using field and core data for the site provided unfavorable results for air fill-up. This report presents Sandia National Laboratories' petrologic and petrophysical analysis of the Dallas Center Structure that aids in understanding why the site was not suitable for gas storage
    • …
    corecore