1,040 research outputs found
Novel synovial fluid recovery method allows for quantification of a marker of arthritis in mice
SummaryObjectiveWe evaluated three methodologies – a calcium sodium alginate compound (CSAC), polyacrylate beads (PABs), and Whatman paper recovery (WPR) – for the ability to recover synovial fluid (SF) from mouse knees in a manner that facilitated biochemical marker analysis.MethodsPilot testing of each of these recovery vehicles was conducted using small volumes of waste human SF. CSAC emerged as the method of choice, and was used to recover and quantify SF from the knees of C57BL/6 mice (n=12), six of which were given left knee articular fractures. SF concentrations of cartilage oligomeric matrix protein (COMP) were measured by enzyme-linked immunosorbent assay.ResultsThe mean concentration ratio [(COMPleft knee)/(COMPright knee)] was higher in the mice subjected to articular fracture when compared to the non-fracture mice (P=0.026). The mean total COMP ratio (taking into account the quantitative recovery of SF) best discriminated between fracture and non-fracture knees (P=0.004).ConclusionsOur results provide the first direct evidence of accelerated joint tissue turnover in a mouse model responding to acute joint injury. These data strongly suggest that mouse SF recovery is feasible and that biomarker analysis of collected SF samples can augment traditional histological analyses in mouse models of arthritis
The history of expansion of the genus Bursaphelenchus (Nematoda: Aphelenchida: Parasitaphelenchidae)
Kinematically Complete Measurements of p+p→p+n+(pi+) Near Threshold
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Crystal structure of Cu-Sn-In alloys around the {\eta} phase field studied by neutron diffraction
The study of the Cu-Sn-In ternary system has become of great importance in
recent years, due to new environmental regulations forcing to eliminate the use
of Pb in bonding technologies for electronic devices. A key relevant issue
concerns the intermetallic phases which grow in the bonding zone and are
determining in their quality and performance. In this work, we focus in the
{\eta}-phase (Cu2In or Cu6Sn5) that exists in both end binaries and as a
ternary phase. We present a neutron diffraction study of the constitution and
crystallography of a series of alloys around the 60 at.% Cu composition, and
with In contents ranging from 0 to 25 at.%, quenched from 300\degreeC. The
alloys were characterized by scanning electron microscopy, probe microanalysis
and high-resolution neutron diffraction. The Rietveld refinement of neutron
diffraction data allowed to improve the currently available model for site
occupancies in the hexagonal {\eta}-phase in the binary Cu-Sn as well as in
ternary alloys. For the first time, structural data is reported in the ternary
Cu-Sn-In {\eta}-phase as a function of composition, information that is of
fundamental technological importance as well as valuable input data for ongoing
modelisations of the ternary phase diagram.Comment: 8 pages, 10 figure
Kinematically Complete Measurements of p+p → p+n+(pi+) Near Threshold
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Integrative radiomics expression predicts molecular subtypes of primary clear cell renal cell carcinoma
AIM: To identify combined positron-emission tomography (PET)/magnetic resonance imaging (MRI)-based radiomics as a surrogate biomarker of intratumour disease risk for molecular subtype ccA and ccB in patients with primary clear cell renal cell carcinoma (ccRCC). MATERIALS AND METHODS: PET/MRI data were analysed retrospectively from eight patients. One hundred and sixty-eight radiomics features for each tumour sampling based on the regionally sampled tumours with 23 specimens were extracted. Sparse partial least squares discriminant analysis (SPLS-DA) was applied to feature screening on high-throughput radiomics features and project the selected features to low-dimensional intrinsic latent components as radiomics signatures. In addition, multilevel omics datasets were leveraged to explore the complementing information and elevate the discriminative ability. RESULTS: The correct classification rate (CCR) for molecular subtype classification by SPLS-DA using only radiomics features was 86.96% with permutation test p=7x10-4. When multi-omics datasets including mRNA, microvascular density, and clinical parameters from each specimen were combined with radiomics features to refine the model of SPLS-DA, the best CCR was 95.65% with permutation test, p<10-4; however, even in the case of generating the classification based on transcription features, which is the reference standard, there is roughly 10% classification ambiguity. Thus, this classification level (86.96-95.65%) of the proposed method represents the discriminating level that is consistent with reality. CONCLUSION: Featured with high accuracy, an integrated multi-omics model of PET/MRI-based radiomics could be the first non-invasive investigation for disease risk stratification and guidance of treatment in patients with primary ccRCC
Analyzing Powers for pp → pnπ^+
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
Binding of aberrant glycoproteins recognizable by Helix pomatia agglutinin in adrenal cancers
Background. Aberrant glycosylation is a hallmark of cancer cells and plays an important role in oncogenesis and cancer progression including metastasis. This study aimed to assess alteration in cellular glycosylation, detected by lectin Helix pomatia agglutinin (HPA) binding, in adrenal cancers and to determine whether such altered glycosylation has prognostic significance. Methods. HPA binding lectin histochemistry was performed on archival paraffin wax‐embedded specimens of adrenocortical cancers excised from patients attending two tertiary referral centres. Benign tumours were used as controls. Demographic, histological and survival data were collected and compared between patients with HPA‐positive and HPA‐negative tumours. Results. Thirty‐two patients were treated for adrenal cancer between 2000 and 2016; their median age was 49 (range 23–79) years. Fifteen patients had functioning tumours (14 adrenal Cushing's tumours and 1 Conn's tumour). Mean(s.d.) tumour size was 127·71(49·70) mm. None of 10 control tumours expressed HPA‐binding glycoproteins. Invasion was associated with HPA‐binding glycoproteins (P = 0·018). Local recurrence or metastatic disease did not significantly differ between HPA‐positive and HPA‐negative adrenocortical cancers. Overall survival was significantly longer in patients with HPA‐negative tumours (median survival not reached versus 22 months in patients with HPA‐positive tumours; P = 0·002). Conclusion. Altered cellular glycosylation detected by lectin HPA is associated with poor survival in patients with adrenocortical cancer
Ocean forests: breakthrough yields for macroalgae
The US Department of Energy Advanced Research Projects Agency - Energy (ARPA-E) MacroAlgae Research Inspiring Novel Energy Research (MARINER) program is encouraging technologies for the sustainable harvest of large funding research of macroalgae for biofuels at less than $80 per dry metric ton (DMT). The Ocean Forests team, led by the University of Southern Mississippi, is developing a complete managed ecosystem where nutrients are transformed and recycled. The team’s designs address major bottlenecks in profitability of offshore aquaculture systems including economical moored structures that can withstand storms, efficient planting, managing and harvesting systems, and sustainable nutrient supply. The work is inspired by Lapointe who reported yields of Gracilaria tikvahiae equivalent to 127 DMT per hectare per year (compared with standard aquaculture systems in the range of 20 to 40 DMT/ha/yr). This approach offers the potential for breakthrough yields for many macroalgae species. Moreover, mini-ecosystems in offshore waters create communities of macroalgae, shellfish, and penned finfish, supplemented by visiting free-range fish that can increase productivity, produce quality products, and create jobs and income for aquafarmers. Additional benefits include reduced disease in fish pens, cleaning contaminated coastal waters, and
maximizing nutrient recycling. Cost projections for a successful, intensive, scaled system are competitive with current prices for fossil fuels
- …