1,297 research outputs found
The Chiral Phase Transition in Dissipative Dynamics
Numerical simulations of the chiral phase transition in the (3+1)dimensional
O(4)-model are presented. The evolutions of the chiral field follow purely
dissipative dynamics, starting from random chirally symmetric initial
configurations down to the true vacuum with spontaneously broken symmetry. The
model stabilizes topological textures which are formed together with domains of
disoriented chiral condensate (DCC) during the roll-down phase. The classically
evolving field acts as source for the emission of pions and mesons.
The exponents of power laws for the growth of angular correlations and for
emission rates are extracted. Fluctuations in the abundance ratios for neutral
and charged pions are compared with those for uncorrelated sources as potential
signature for the chiral phase transition after heavy-ion collisions. It is
found that the presence of stabilizing textures (baryons and antibaryons)
prevents sufficiently rapid growth of DCC-domain size, so observability of
anomalous tails in the abundance ratios is unlikely. However, the transient
formation of growing DCC domains causes sizable broadening of the distributions
as compared to the statistical widths of generic sources.Comment: 28 pages, 8 figure
PHYLO-ASP: Phylogenetic Systematics with Answer Set Programming
This note summarizes the use of Answer Set Programming to solve various computational problems to infer phylogenetic trees and phylogenetic networks, and discusses its applicability and effectiveness on some real taxa
Charge and Isospin Fluctuations in High Energy pp-Collisions
Charge and isospin event-by-event fluctuations in high-energy pp-collisions
are predicted within the Unitary Eikonal Model, in particular the fluctuation
patterns of the ratios of charged-to-charged and neutral-to-charged pions.
These fluctuations are found to be sensitive to the presence of unstable
resonances, such as and mesons. We predict that the
charge-fluctuation observable should be restricted to the interval
depending on the production ratio. Also, the
isospin fluctuations of the DCC-type of the ratio of neutral-to-charged pions
are suppressed if pions are produced together with mesons.Comment: Latex, 5 pages, no figures. To appear in the proceedings of 9th
Adriatic Meeting, Dubrovnik, Croatia, 4 - 14 September 2003. Added reference
into reference no.
Unifying Parsimonious Tree Reconciliation
Evolution is a process that is influenced by various environmental factors,
e.g. the interactions between different species, genes, and biogeographical
properties. Hence, it is interesting to study the combined evolutionary history
of multiple species, their genes, and the environment they live in. A common
approach to address this research problem is to describe each individual
evolution as a phylogenetic tree and construct a tree reconciliation which is
parsimonious with respect to a given event model. Unfortunately, most of the
previous approaches are designed only either for host-parasite systems, for
gene tree/species tree reconciliation, or biogeography. Hence, a method is
desirable, which addresses the general problem of mapping phylogenetic trees
and covering all varieties of coevolving systems, including e.g., predator-prey
and symbiotic relationships. To overcome this gap, we introduce a generalized
cophylogenetic event model considering the combinatorial complete set of local
coevolutionary events. We give a dynamic programming based heuristic for
solving the maximum parsimony reconciliation problem in time O(n^2), for two
phylogenies each with at most n leaves. Furthermore, we present an exact
branch-and-bound algorithm which uses the results from the dynamic programming
heuristic for discarding partial reconciliations. The approach has been
implemented as a Java application which is freely available from
http://pacosy.informatik.uni-leipzig.de/coresym.Comment: Peer-reviewed and presented as part of the 13th Workshop on
Algorithms in Bioinformatics (WABI2013
Exploring leadership in multi-sectoral partnerships
This article explores some critical aspects of leadership in the context of multi-sectoral partnerships. It focuses on leadership in practice and asks the question, `How do managers experience and perceive leadership in such partnerships?' The study contributes to the debate on whether leadership in a multi-sectoral partnership context differs from that within a single organization. It is based on the accounts of practising managers working in complex partnerships. The article highlights a number of leadership challenges faced by those working in multi-sectoral partnerships. Partnership practitioners were clear that leadership in partnerships was more complex than in single organizations. However, it was more difficult for them to agree a consensus on the essential nature of leadership in partnership. We suggest that a first-, second- and third-person approach might be a way of better interpreting leadership in the context of partnerships
A Study of the S=1/2 Alternating Chain using Multiprecision Methods
In this paper we present results for the ground state and low-lying
excitations of the alternating Heisenberg antiferromagnetic chain. Our
more conventional techniques include perturbation theory about the dimer limit
and numerical diagonalization of systems of up to 28 spins. A novel application
of multiple precision numerical diagonalization allows us to determine
analytical perturbation series to high order; the results found using this
approach include ninth-order perturbation series for the ground state energy
and one magnon gap, which were previously known only to third order. We also
give the fifth-order dispersion relation and third-order exclusive neutron
scattering structure factor for one-magnon modes and numerical and analytical
binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs
available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm
A Complete Theory of Grand Unification in Five Dimensions
A fully realistic unified theory is constructed, with SU(5) gauge symmetry
and supersymmetry both broken by boundary conditions in a fifth dimension.
Despite the local explicit breaking of SU(5) at a boundary of the dimension,
the large size of the extra dimension allows precise predictions for gauge
coupling unification, alpha_s(M_Z) = 0.118 \pm 0.003, and for Yukawa coupling
unification, m_b(M_Z) = 3.3 \pm 0.2 GeV. A complete understanding of the MSSM
Higgs sector is given; with explanations for why the Higgs triplets are heavy,
why the Higgs doublets are protected from a large tree-level mass, and why the
mu and B parameters are naturally generated to be of order the SUSY breaking
scale. All sources of d=4,5 proton decay are forbidden, while a new origin for
d=6 proton decay is found to be important. Several aspects of flavor follow
from an essentially unique choice of matter location in the fifth dimension:
only the third generation has an SU(5) mass relation, and the lighter two
generations have small mixings with the heaviest generation. The entire
superpartner spectrum is predicted in terms of only two free parameters. The
squark and slepton masses are determined by their location in the fifth
dimension, allowing a significant experimental test of the detailed structure
of the extra dimension. Lepton flavor violation is found to be generically
large in higher dimensional unified theories with high mediation scales of SUSY
breaking. In our theory this forces a common location for all three neutrinos,
predicting large neutrino mixing angles. Rates for mu -> e gamma, mu -> e e e,
mu -> e conversion and tau -> mu gamma are larger in our theory than in
conventional 4D supersymmetric GUTs. Proposed experiments probing mu -> e
transitions will probe the entire interesting parameter space of our theory.Comment: 51 pages, late
- …