19 research outputs found

    A novel intravaginal ring to prevent HIV-1, HSV-2, HPV, and unintended pregnancy

    No full text
    Women urgently need a self-initiated, multipurpose prevention technology (MPT) that simultaneously reduces their risk of acquiring HIV-1, HSV-2, and HPV (latter two associated with increased risk of HIV-1 acquisition) and prevent unintended pregnancy. Here, we describe a novel core-matrix intravaginal ring (IVR), the MZCL IVR, which effectively delivered the MZC combination microbicide and a contraceptive. The MZCL IVR contains four active pharmaceutical ingredients (APIs): MIV-150 (targets HIV), zinc acetate (ZA; targets HIV and HSV-2), carrageenan (CG; targets HPV and HSV-2), and levonorgestrel (LNG; targets unintended pregnancy). The elastomeric IVR body (matrix) was produced by hot melt extrusion of the non-water swellable elastomer, ethylene vinyl acetate (EVA-28), containing the hydrophobic small molecules, MIV-150 and LNG. The solid hydrophilic core, embedded within the IVR by compression, contained the small molecule ZA and a macromolecule CG. Hydrated ZA/CG from the core was released by diffusion via a pore on the IVR while the MIV-150/LNG diffused from the matrix continuously for 94 days (d) in vitro and up to 28d (study period) in macaques. The APIs released in vitro and in vivo were active against HIV-1_ADA-M, HSV-2, and HPV16 PsV in cell-based assays. Serum LNG was at levels associated with local contraceptive effects. The results demonstrate proof-of-concept of a novel core-matrix IVR for sustained and simultaneous delivery of diverse molecules for the prevention of HIV, HSV-2 and HPV acquisition, as well as unintended pregnancy

    A Glycolipid Adjuvant, 7DW8-5, Enhances CD8+ T Cell Responses Induced by an Adenovirus-Vectored Malaria Vaccine in Non-Human Primates

    Get PDF
    <div><p>A key strategy to a successful vaccine against malaria is to identify and develop new adjuvants that can enhance T-cell responses and improve protective immunity. Upon co-administration with a rodent malaria vaccine in mice, 7DW8-5, a recently identified novel analog of α-galactosylceramide (α-GalCer), enhances the level of malaria-specific protective immune responses more strongly than the parent compound. In this study, we sought to determine whether 7DW8-5 could provide a similar potent adjuvant effect on a candidate human malaria vaccine in the more relevant non-human primate (NHP) model, prior to committing to clinical development. The candidate human malaria vaccine, AdPfCA (NMRC-M3V-Ad-PfCA), consists of two non-replicating recombinant adenoviral (Ad) vectors, one expressing the circumsporozoite protein (CSP) and another expressing the apical membrane antigen-1 (AMA1) of <i>Plasmodium falciparum</i>. In several phase 1 clinical trials, AdPfCA was well tolerated and demonstrated immunogenicity for both humoral and cell-mediated responses. In the study described herein, 25 rhesus macaques received prime and boost intramuscular (IM) immunizations of AdPfCA alone or with an ascending dose of 7DW8-5. Our results indicate that 7DW8-5 is safe and well-tolerated and provides a significant enhancement (up to 9-fold) in malaria-specific CD8+ T-cell responses after both priming and boosting phases, supporting further clinical development.</p> </div

    Blocking α4β7 integrin delays viral rebound in SHIVSF162P3-infected macaques treated with anti-HIV broadly neutralizing antibodies

    No full text
    Anti-HIV broadly neutralizing antibodies (bNAbs) may favor development of antiviral immunity by engaging the immune system during immunotherapy. Targeting integrin α4β7 with an anti-α4β7 monoclonal antibody (Rh-α4β7) affects immune responses in SIV/SHIV-infected macaques. To explore the therapeutic potential of combining bNAbs with α4β7 integrin blockade, SHIVSF162P3-infected, viremic rhesus macaques were treated with bNAbs only (VRC07-523LS and PGT128 anti-HIV antibodies) or a combination of bNAbs and Rh-α4β7 or were left untreated as a control. Treatment with bNAbs alone decreased viremia below 200 copies/ml in all macaques, but seven of eight macaques (87.5%) in the bNAbs-only group rebounded within a median of 3 weeks (95% CI: 2 to 9). In contrast, three of six macaques treated with a combination of Rh-α4β7 and bNAbs (50%) maintained a viremia below 200 copies/ml until the end of the follow-up period; viremia in the other three macaques rebounded within a median of 6 weeks (95% CI: 5 to 11). Thus, there was a modest delay in viral rebound in the macaques treated with the combination antibody therapy compared to bNAbs alone. Our study suggests that α4β7 integrin blockade may prolong virologic control by bNAbs in SHIVSF162P3-infected macaques

    Adjuvant effect of 7DW8-5 on AdPfCA in rhesus macaques.

    No full text
    <p>(A) Cellular immunogenicity upon 7DW8-5 and AdPfCA co-administration <i>in </i><i>vivo</i>. Five animals per group were vaccinated with AdPfCA alone (control) or in combination with one of four ascending doses of 7DW8-5. PBMCs were isolated before prime and boost and at eight weeks post prime and post boost, stimulated with <i>Pf</i>CSP- or <i>Pf</i>AMA1-specific peptides, and the number of IFN-γ-secreting cells was measured by ELISpot assay. Stimulation index was calculated as the number of spots detected in the respective peptide stimulated well divided by the number of spots in the media only well, and the bars displayed are the mean of 5 animals per dose group. All samples were run in duplicate. Asterisks represent statistical significance (p < 0.05) for the summation of <i>Pf</i>CSP- and <i>Pf</i>AMA1 T-cell responses for each respective dose group as compared to the control dose group (AdPfCA + 0 μg 7DW8-5), and error bars represent the standard error for the five animals per group. (B) Enhancement of malaria-specific CD8+ T-cell responses by 7DW8-5. PBMCs from four macaques that received AdPfCA + 100 µg 7DW8-5 were isolated at eight weeks post boost, depleted of CD4+ or CD8+ T cells, stimulated with <i>Pf</i>CSP-or <i>Pf</i>AMA1-specific peptides, and the relative number of IFN-γ secreting cells were determined by ELISpot assay. All samples were run in duplicate and subtracted for background levels measured in cells stimulated with culture medium containing 0.01% DMSO (negative control). Error bars represent the standard error between duplicated wells. Representative data from one animal are shown. (C) Humoral immunogenicity upon in vivo co-administration of 7DW8-5 and AdPfCA. Animals were vaccinated with AdPfCA alone or in combination with 7DW8-5 as described above. Sera were isolated at four weeks post prime and three weeks post boost and measured for levels of PfCSP- and PfAMA1-directed antibodies. Values presented are a mean of 5 animals per group at each respective time point. All samples were run in duplicate. </p

    Activity of 7DW8-5 on DCs and <i>i</i>NKT cells in rhesus macaques.

    No full text
    <p>(<b>A</b>) Percentage of circulating and activated monocytoid DCs upon 7DW8-5 and AdPfCA co-administration <i>in </i><i>vivo</i>. PBMCs were isolated 24 hours post prime and stained for circulating (left panel) and activated (right panel) DCs. Each column indicates the mean value for 5 animals per group; errors bars denote SEM. * = p < 0.05 and ** = p <0.01 when compared to control group receiving AdPfCA + 0 µg 7DW8-5. (<b>B</b>) AdPfCA administration with or without 7DW8-5 induces a transient decrease in the percentage of iNKT cells. PBMCs were isolated at baseline and up to 2 weeks post prime and stained for iNKT cells as described. Each point represents % iNKT cells from one animal; lines indicate mean % iNKT cells per dose group at the indicated time point.</p

    Sustained <i>in vivo</i> release of MIV-150 from IVRs for 56 days.

    No full text
    <p>Depo-Provera-treated SHIV-RT+ animals had 100 mg MIV-150 IVRs inserted for 56 d. Blood and vaginal swabs were collected prior to (BL) and after IVR insertion. Cervical and vaginal tissues were collected 1 d after IVR removal. MIV-150 levels in the vaginal swabs (A; measured by RIA) and plasma (B; measured by LCMS/MS) are shown for each animal (left panels) and the mean values for all animals (±SEM; right panels) over time. (C) MIV-150 levels in cervical and vaginal tissues (measured by LCMS/MS) are shown for each animal (left panel; 1-2 pieces of tissue measured per animal, mean±SEM shown for duplicates) and the means (±SEM, for all animals) for each tissue are shown in the right panel. Animals wearing placebo IVRs were negative for MIV-150 in swabs, plasma and tissues (not shown).</p
    corecore