83 research outputs found

    Paddlefish (Polyodon spathula) in Europe: An aquaculture species and a potential invader

    Get PDF
    The paddlefish (Polyodon spathula) was first introduced to Europe in 1974, mainly due to its potential for rearing in natural polyculture ponds and large temperate reservoirs. The information on the history of paddlefish aquaculture efforts in Europe is scarce, as well as data on current paddlefish aquaculture status and trends. In addition, there is a lack of data on its presence and potential establishment in the wild, while its invasive potential and associated risks and impacts are largely unknown. In order to evaluate its current status in Europe, we conducted a survey among scientists, aquaculture producers and other stakeholders, and reviewed literature and data on the Internet. Based on the results obtained, we discuss the potential and the challenges in European paddlefish aquaculture development, and analyze paddlefish invasive potential and risks associated with its naturalization. Paddlefish aquaculture is well established only regionally in Europe, but offers relatively high potential for further development in pond farms. Nevertheless, future development will require careful planning, especially regarding market development and improved marketing strategies. While paddlefish likely represents a low-risk invader, improved control and reporting on trade and intentional and unintentional releases will be required. Given the lack of knowledge on potential impacts following its introduction, due caution seems highly advisable.This is the peer reviewed version of the following article: Jarić I, Bronzi P, Cvijanović G, Lenhardt M, Smederevac-Lalić M, Gessner J. Paddlefish (Polyodon spathula) in Europe: An aquaculture species and a potential invader. J Appl Ichthyol. 2018, which has been published in final form at [http://doi.org/10.1111/jai.13672]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving

    Photon-efficient imaging with a single-photon camera

    Get PDF
    Reconstructing a scene's 3D structure and reflectivity accurately with an active imaging system operating in low-light-level conditions has wide-ranging applications, spanning biological imaging to remote sensing. Here we propose and experimentally demonstrate a depth and reflectivity imaging system with a single-photon camera that generates high-quality images from ∼1 detected signal photon per pixel. Previous achievements of similar photon efficiency have been with conventional raster-scanning data collection using single-pixel photon counters capable of ∼10-ps time tagging. In contrast, our camera's detector array requires highly parallelized time-to-digital conversions with photon time-tagging accuracy limited to ∼ns. Thus, we develop an array-specific algorithm that converts coarsely time-binned photon detections to highly accurate scene depth and reflectivity by exploiting both the transverse smoothness and longitudinal sparsity of natural scenes. By overcoming the coarse time resolution of the array, our framework uniquely achieves high photon efficiency in a relatively short acquisition time

    Managing Polyploidy in Ex Situ Conservation Genetics: The Case of the Critically Endangered Adriatic Sturgeon (Acipenser naccarii)

    Get PDF
    While the current expansion of conservation genetics enables to address more efficiently the management of threatened species, alternative methods for genetic relatedness data analysis in polyploid species are necessary. Within this framework, we present a standardized and simple protocol specifically designed for polyploid species that can facilitate management of genetic diversity, as exemplified by the ex situ conservation program for the tetraploid Adriatic sturgeon Acipenser naccarii. A critically endangered endemic species of the Adriatic Sea tributaries, its persistence is strictly linked to the ex situ conservation of a single captive broodstock currently decimated to about 25 individuals, which represents the last remaining population of Adriatic sturgeon of certain wild origin. The genetic variability of three F1 broodstocks available as future breeders was estimated based on mitochondrial and microsatellite information and compared with the variability of the parental generation. Genetic data showed that the F1 stocks have only retained part of the genetic variation present in the original stock due to the few parent pairs used as founders. This prompts for the urgent improvement of the current F1 stocks by incorporating new founders that better represent the genetic diversity available. Following parental allocation based on band sharing values, we set up a user-friendly tool for selection of candidate breeders according to relatedness between all possible parent-pairs that secures the use of non-related individuals. The approach developed here could also be applied to other endangered tetraploid sturgeon species overexploited for caviar production, particularly in regions lacking proper infrastructure and/or expertise

    Wrapper generation for overlapping Web sources

    No full text
    corecore