16 research outputs found

    Inflation and Preheating in NO models

    Get PDF
    We study inflationary models in which the effective potential of the inflaton field does not have a minimum, but rather gradually decreases at large ϕ\phi. In such models the inflaton field does not oscillate after inflation, and its effective mass becomes vanishingly small, so the standard theory of reheating based on the decay of the oscillating inflaton field does not apply. For a long time the only mechanism of reheating in such non-oscillatory (NO) models was based on gravitational particle production in an expanding universe. This mechanism is very inefficient. We will show that it may lead to cosmological problems associated with large isocurvature fluctuations and overproduction of dangerous relics such as gravitinos and moduli fields. We also note that the setting of initial conditions for the stage of reheating in these models should be reconsidered. All of these problems can be resolved in the context of the recently proposed scenario of instant preheating if there exists an interaction g2ϕ2χ2{g^2} \phi^2\chi^2 of the inflaton field ϕ\phi with another scalar field χ\chi. We show that the mechanism of instant preheating in NO models is much more efficient than the usual mechanism of gravitational particle production even if the coupling constant g2g^2 is extremely small, 10−14â‰Șg2â‰Ș110^{-14} \ll g^2 \ll 1.Comment: 10 pages, revte

    Top-down and bottom-up control of infauna varies across the saltmarsh landscape

    Get PDF
    Author Posting. © The Author(s), 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Journal of Experimental Marine Biology and Ecology 357 (2008): 20-34, doi:10.1016/j.jembe.2007.12.003.Responses of infaunal saltmarsh benthic invertebrates to whole-ecosystem fertilization and predator removal were quantified in Plum Island Estuary, Massachusetts, USA. Throughout a growing season, we enriched an experimental creek on each flooding tide to 70 mM NO3 - and 4 mM PO4 -3 (a 10 x increase in loading above background), and we reduced Fundulus heteroclitus density by 60% in a branch of the fertilized and a reference creek. Macroinfauna and meiofauna were sampled in creek (mudflat and creek wall), marsh edge (tall form Spartina alterniflora) and marsh platform (Spartina patens and stunted S. alterniflora) habitats before and after treatments were begun; responses were tested with BACI-design statistics. Treatment effects were most common in the mid-range of the inundation gradient. Most fertilization effects were on creek wall where ostracod abundance increased, indices of copepod reproduction increased and copepod and annelid communities were altered. These taxa may use epiphytes (that respond rapidly to fertilization) of filamentous algae as a food source. Killifish reduction effects on meiobenthic copepod abundance were detected at the marsh edge and suggest predator limitation. Fish reduction effects on annelids did not suggest top-down regulation in any habitat; however, fish reduction may have stimulated an increased predation rate on annelids by grass shrimp. Interactions between fertilization and fish reduction occurred under S. patens canopy where indirect predator reduction effects on annelids were indicated. No effects were observed in mudflat or stunted S. alterniflora habitats. Although the responses of infauna to fertilization and predator removal were largely independent and of similar mild intensity, our data suggests that the effects of ecological stressors vary across the marsh landscape.This research was supported by the National Science Foundation under Grants No. 0213767 and 9726921
    corecore