105 research outputs found

    Modulated amplitude waves with nonzero phases in Bose-Einstein condensates

    Full text link
    In this paper we give a frame for application of the averaging method to Bose-Einstein condensates (BECs) and obtain an abstract result upon the dynamics of BECs. Using aver- aging method, we determine the location where the modulated amplitude waves (periodic or quasi-periodic) exist and we also study the stability and instability of modulated amplitude waves (periodic or quasi-periodic). Compared with the previous work, modulated amplitude waves studied in this paper have nontrivial phases and this makes the problem become more diffcult, since it involves some singularities.Comment: 17 pages, 2 figure

    Loop structure of the lowest Bloch band for a Bose-Einstein condensate

    Full text link
    We investigate analytically and numerically Bloch waves for a Bose--Einstein condensate in a sinusoidal external potential. At low densities the dependence of the energy on the quasimomentum is similar to that for a single particle, but at densities greater than a critical one the lowest band becomes triple-valued near the boundary of the first Brillouin zone and develops the structure characteristic of the swallow-tail catastrophe. We comment on the experimental consequences of this behavior.Comment: 4 pages, 7 figure

    Controlled Generation of Dark Solitons with Phase Imprinting

    Full text link
    The generation of dark solitons in Bose-Einstein condensates with phase imprinting is studied by mapping it into the classic problem of a damped driven pendulum. We provide simple but powerful schemes of designing the phase imprint for various desired outcomes. We derive a formula for the number of dark solitons generated by a given phase step, and also obtain results which explain experimental observations.Comment: 4pages, 4 figure

    Suppression of transverse instabilities of dark solitons and their dispersive shock waves

    Full text link
    We investigate the impact of nonlocality, owing to diffusive behavior, on transverse instabilities of a dark stripe propagating in a defocusing cubic medium. The nonlocal response turns out to have a strongly stabilizing effect both in the case of a single soliton input and in the regime where dispersive shock waves develop "multisoliton regime". Such conclusions are supported by the linear stability analysis and numerical simulation of the propagation

    Uncertainty estimates and L_2 bounds for the Kuramoto-Sivashinsky equation

    Full text link
    We consider the Kuramoto-Sivashinsky (KS) equation in one spatial dimension with periodic boundary conditions. We apply a Lyapunov function argument similar to the one first introduced by Nicolaenko, Scheurer, and Temam, and later improved by Collet, Eckmann, Epstein and Stubbe, and Goodman, to prove that ||u||_2 < C L^1.5. This result is slightly weaker than that recently announced by Giacomelli and Otto, but applies in the presence of an additional linear destabilizing term. We further show that for a large class of Lyapunov functions \phi the exponent 1.5 is the best possible from this line of argument. Further, this result together with a result of Molinet gives an improved estimate for L_2 boundedness of the Kuramoto-Sivashinsky equation in thin rectangular domains in two spatial dimensions.Comment: 17 pages, 1 figure; typos corrected, references added; figure modifie

    Tunable tunneling: An application of stationary states of Bose-Einstein condensates in traps of finite depth

    Full text link
    The fundamental question of how Bose-Einstein condensates tunnel into a barrier is addressed. The cubic nonlinear Schrodinger equation with a finite square well potential, which models a Bose-Einstein condensate in a quasi-one-dimensional trap of finite depth, is solved for the complete set of localized and partially localized stationary states, which the former evolve into when the nonlinearity is increased. An immediate application of these different solution types is tunable tunneling. Magnetically tunable Feshbach resonances can change the scattering length of certain Bose-condensed atoms, such as 85^{85}Rb, by several orders of magnitude, including the sign, and thereby also change the mean field nonlinearity term of the equation and the tunneling of the wavefunction. We find both linear-type localized solutions and uniquely nonlinear partially localized solutions where the tails of the wavefunction become nonzero at infinity when the nonlinearity increases. The tunneling of the wavefunction into the non-classical regime and thus its localization therefore becomes an external experimentally controllable parameter.Comment: 11 pages, 5 figure

    Modulational instability in cigar shaped Bose-Einstein condensates in optical lattices

    Full text link
    A self consistent theory of a cigar shaped Bose-Einstein condensate (BEC) periodically modulated by a laser beam is presented. We show, both theoretically and numerically, that modulational instability/stability is the mechanism by which wavefunctions of soliton type can be generated in cigar shaped BEC subject to a 1D optical lattice. The theory explains why bright solitons can exist in BEC with positive scattering length and why condensate with negative scattering length can be stable and give rise to dark solitary pulses.Comment: Submitted, 4 pages, 3 figures. Revised versio

    On the Elliptic-Hyperbolic Transition in Whitham Modulation Theory

    Get PDF
    The dispersionless Whitham modulation equations in one space dimension and time are generically hyperbolic or elliptic, and breakdown at the transition, which is a curve in the frequency-wavenumber plane. In this paper, the modulation theory is reformulated with a slow phase and different scalings resulting in a phase modulation equation near the singular curves which is a geometric form of the two-way Boussinesq equation. This equation is universal in the same sense as Whitham theory. Moreover, it is dispersive, and it has a wide range of interesting multiperiodic, quasiperiodic and multi-pulse localized solutions. This theory shows that the elliptic-hyperbolic transition is a rich source of complex behaviour in nonlinear wave fields. There are several examples of these transition curves in the literature to which the theory applies. For illustration the theory is applied to the complex nonlinear Klein-Gordon equation which has two singular curves in the manifold of periodic travelling waves
    • …
    corecore