10 research outputs found

    No divergence in Cassiope tetragona: persistence of growth response along a latitudinal temperature gradient and under multi-year experimental warming.

    No full text
    The dwarf shrub Cassiope tetragona (Arctic bell-heather) is increasingly used for arctic climate reconstructions, the reliability of which depends on the existence of a linear climate-growth relationship. This relationship was examined over a high-arctic to sub-arctic temperature gradient and under multi-year artificial warming at a high-arctic site. Growth chronologies of annual shoot length, as well as total leaf length, number of leaves and average leaf length per year, were constructed for three sites. Cassiope tetragona was sampled near its cold tolerance limit at Ny-Ålesund, Svalbard, at its assumed climatic optimum in Endalen, Svalbard, and near its European southern limit at Abisko, Sweden. Together these sites represent the entire temperature gradient of this species. Leaf life span was also determined. Each growing season from 2004 to 2010, 17 open top chambers (OTCs) were placed near Ny-Ålesund, thus increasing the daily mean temperatures by 1·23°C. At the end of the 2010 growing season, shoots were harvested from OTCs and control plots, and growth parameters were measured. All growth parameters, except average leaf length, exhibited a linear positive response (R(2) between 0·63 and 0·91) to mean July temperature over the temperature gradient. Average leaf life span was 1·4 years shorter in sub-arctic Sweden compared with arctic Svalbard. All growth parameters increased in response to the experimental warming; the leaf life span was, however, not significantly affected by OTC warming. The linear July temperature-growth relationships, as well as the 7 year effect of experimental warming, confirm that the growth parameters annual shoot length, total leaf length and number of leaves per year can reliably be used for monitoring and reconstructing temperature changes. Furthermore, reconstructing July temperature from these parameters is not hampered by divergence

    Regional species richness and genetic diversity of arctic vegetation reflect both past glaciations and current climate

    No full text
    AimThe Arctic has experienced marked climatic differences between glacial and interglacial periods and is now subject to a rapidly warming climate. Knowledge of the effects of historical processes on current patterns of diversity may aid predictions of the responses of vegetation to future climate change. We aim to test whether plant species and genetic diversity patterns are correlated with time since deglaciation at regional and local scales. We also investigate whether species richness is correlated with genetic diversity in vascular plants. LocationCircumarctic. MethodsWe investigated species richness of the vascular plant flora of 21 floristic provinces and examined local species richness in 6215 vegetation plots distributed across the Arctic. We assessed levels of genetic diversity inferred from amplified fragment length polymorphism variation across populations of 23 common Arctic species. Correlations between diversity measures and landscape age (time since deglaciation) as well as variables characterizing current climate were analysed using spatially explicit simultaneous autoregressive models. ResultsRegional species richness of vascular plants and genetic diversity were correlated with each other, and both showed a positive relationship with landscape age. Plot species richness showed differing responses for vascular plants, bryophytes and lichens. At this finer scale, the richness of vascular plants was not significantly related to landscape age, which had a small effect size compared to the models of bryophyte and lichen richness. Main conclusionOur study suggests that imprints of past glaciations in Arctic vegetation diversity patterns at the regional scale are still detectable today. Since Arctic vegetation is still limited by post-glacial migration lag, it will most probably also exhibit lags in response to current and future climate change. Our results also suggest that local species richness at the plot scale is more determined by local habitat factors

    Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency

    No full text
    Inherited CARMIL2 deficiency underlies infections, EBV+ smooth muscle tumors, and mucocutaneous inflammation. CARMIL2 deficiency impairs CD28 signaling only partially in T cells. The comparison of CARMIL2 and CD28 deficiency in humans suggests that CARMIL2 governs immunological pathways beyond CD28. Patients with inherited CARMIL2 or CD28 deficiency have defective T cell CD28 signaling, but their immunological and clinical phenotypes remain largely unknown. We show that only one of three CARMIL2 isoforms is produced and functional across leukocyte subsets. Tested mutant CARMIL2 alleles from 89 patients and 52 families impair canonical NF-kappa B but not AP-1 and NFAT activation in T cells stimulated via CD28. Like CD28-deficient patients, CARMIL2-deficient patients display recalcitrant warts and low blood counts of CD4(+) and CD8(+) memory T cells and CD4(+) T(REG)s. Unlike CD28-deficient patients, they have low counts of NK cells and memory B cells, and their antibody responses are weak. CARMIL2 deficiency is fully penetrant by the age of 10 yr and is characterized by numerous infections, EBV+ smooth muscle tumors, and mucocutaneous inflammation, including inflammatory bowel disease. Patients with somatic reversions of a mutant allele in CD4(+) T cells have milder phenotypes. Our study suggests that CARMIL2 governs immunological pathways beyond CD28

    History and evolution of the arctic flora: in the footsteps of Eric Hultén

    No full text
    A major contribution to our initial understanding of the origin, history and biogeography of the present-day arctic flora was made by Eric Hulten in his landmark book Outline of the History of Arctic and Boreal Biota during the Quarternary Period, published in 1937. Here we review recent molecular and fossil evidence that has tested some of Hulten's proposals. There is now excellent fossil, molecular and phytogeographical evidence to support Hulten's proposal that Beringia was a major northern refugium for arctic plants throughout the Quaternary. In contrast, most molecular evidence fails to support his proposal that contemporary east and west Atlantic populations of circumarctic and amphi-Atlantic species have been separated throughout the Quaternary. In fact, populations of these species from opposite sides of the Atlantic are normally genetically very similar, thus the North Atlantic does not appear to have been a strong barrier to their dispersal during the Quaternary. Hulten made no detailed proposals on mechanisms of speciation in the Arctic; however, molecular studies have confirmed that many arctic plants are allopolyploid, and some of them most probably originated during the Holocene. Recurrent formation of polyploids from differentiated diploid or more low-ploid populations provides one explanation for the intriguing taxonomic complexity of the arctic flora, also noted by Hulten. In addition, population fragmentation during glacial periods may have lead to the formation of new sibling species at the diploid level. Despite the progress made since Hulten wrote his book, there remain large gaps in our knowledge of the history of the arctic flora, especially about the origins of the founding stocks of this flora which first appeared in the Arctic at the end of the Pliocene (approximately 3 Ma). Comprehensive analyses of the molecular phylogeography of arctic taxa and their relatives together with detailed fossil studies are required to fill these gaps.</p
    corecore