28 research outputs found

    Comparison between surface and volumetric properties of short-chain alcohols and some classical surfactants

    Get PDF
    Measurements of the dynamic surface tension of the aqueous solutions of methanol, ethanol, propanol, CTAB and SDDS at their given concentrations were made. From the obtained results and the literature data it was concluded that the adsorption of short-chain alcohols at the water-air interface is somewhat similar to that of classical surfactants. For that reason the relationship between the Gibbs standard free energy of adsorption of short-chain alcohols and classical surfactants at that interface was established. The correlation between the chemical potential of mixing of alcohols and surfactants was also analysed. This analysis concerned the critical aggregation concentration (CAC) of alcohols and the critical micelle concentration (CMC) of surfactants. The chemical potential of surfactant mixing was calculated from the literature CMC data for the homologous series of alkyl sulfates, alkyl sulfonates, alkyl ammonium chlorides, alkyl trimethylammonium bromides, and alkyl pyridinium bromides. The influence of the hydrophobic chain length of alcohol and surfactant molecules on the Gibbs standard free energy of their adsorption at the water-air interface and their chemical potential of mixing were considered. It appeared that there is a linear dependence between these thermodynamic functions and the number of carbon atoms increased by 1 in the hydrocarbon chains of these compounds. This confirms clearly our conclusion that the behaviour of short-chain alcohols and classical surfactants at the water-air interface and in the bulk phase of aqueous solutions is similar.

    Components of Surface Free Energy of Some Clay Minerals

    No full text

    Comparison of components and parameters of some sulfide minerals surface tension with regards to stability of mineral-air bubble system

    No full text
    The measurements of the advancing contact angle of water, glycerol, formamide, ethylene glycol, diiodomethane, α-bromonaphthalene, 1,2,3-tribromopropane on unoxidized and oxidized galena, pyrite, chalcopyrite, djurleite, bornite and covellite at the temperature equal 293 K were made. Additionally, the measurements of the force air bubble detachment from these sulfide minerals including also chalcocite in water were performed. Using the values of the obtained contact angle of water, glycerol, formamide, ethylene glycol, diiodomethane, α-bromonaphthalene, 1,2,3-tribromopropane the components and parameters of the unoxidized and oxidized sulfide minerals surface tension were calculated. For this calculation the van Oss et al. method was applied after analysis of the components and parameters of the surface tension of liquids used for contact angle measurements. Taking into account the contact angle of water on the sulfide minerals, the detachment force of air bubble from these minerals in water was determined using our equation and comparing to that of measured one. As follows from the measurements and calculations the wetting properties of sulfide minerals and the stability of mineral-air bubble depends to a larger extent on the degree of sulfide minerals oxidation than on the type of mineral

    Surface Properties of Gelatin Films

    No full text

    Adsorption Properties of Hydrocarbon and Fluorocarbon Surfactants Ternary Mixture at the Water-Air Interface

    No full text
    Measurements were made of the surface tension of the aqueous solutions of p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethylene glycols) having 10 oxyethylene groups in the molecule (Triton X-100, TX100) and cetyltrimethylammonium bromide (CTAB) with Zonyl FSN-100 (FC6EO14, FC1) as well as with Zonyl FSO-100 (FC5EO10, FC2) ternary mixtures. The obtained results were compared to those provided by the Fainerman and Miller equation and to the values of the solution surface tension calculated, based on the contribution of a particular surfactant in the mixture to the reduction of water surface tension. The changes of the aqueous solution ternary surfactants mixture surface tension at the constant concentration of TX100 and CTAB mixture at which the water surface tension was reduced to 60 and 50 mN/m as a function of fluorocarbon surfactant concentration, were considered with regard to the composition of the mixed monolayer at the water-air interface. Next, this composition was applied for the calculation of the concentration of the particular surfactants in the monolayer using the Frumkin equation. On the other hand, the Gibbs surface excess concentration was determined only for the fluorocarbon surfactants. The tendency of the particular surfactants to adsorb at the water-air interface was discussed, based on the Gibbs standard free energy of adsorption which was determined using different methods. This energy was also deduced, based on the surfactant tail surface tension and tail-water interface tension

    Wettability and Adhesion Work Prediction in the Polymer–Aqueous Solution of Surface Active Agent Systems

    No full text
    The wettability of solids by aqueous solutions of surfactants is very important in many practical applications. Thus, the measured advancing contact angles of aqueous solutions of chosen surfactants on polyethylene (PE) and those taken from the literature on polytetrafluoroethylene (PTFE), poly(methyl methacrylate) (PMMA), and polyamide (nylon 6) were analyzed. Based on the measured values of the contact angles and the literature data of the surface tensions of the studied surfactant solutions, their adsorption at the PE–water interface and the work of adhesion (Wa) were determined. The values of Wa to PE calculated on the basis of the contact angles and surface tensions of these solutions were compared to those determined by applying the new Lifshitz–van der Waals component of the water–PE surface tension. There was a good agreement between the Wa values determined in two different ways. Their contact angles were calculated using the values of PE surface tension, the new Lifshitz–van der Waals component of the water surface tension, and the surface tension of aqueous solutions of the studied surfactants. The contact angle values calculated in such a way were close to the measured values. In the case of PTFE, the same relations were obtained. The values of Wa to PMMA and nylon 6 could be also predicted
    corecore