56 research outputs found
Tissue print of prostate biopsy: a novel tool in the diagnostic procedure of prostate cancer
<p>Abstract</p> <p>Background</p> <p>Nowadays, the histological examination of prostate core needle biopsies is still regarded as the gold standard in the diagnosis of prostate cancer (PCa). We investigated if the tissue print of core needle biopsy (biopsy print) could be used as adjunctive molecular investigative procedures in conjunction with routine histological examination of biopsy to improve PCa diagnosis.</p> <p>Methods</p> <p>The direct contact of PCa core biopsy to nitrocellulose membrane resulted in the release of a cellular micropeel that was used for downstream analytical procedures.</p> <p>Results</p> <p>By zymogram print-phoresis we demonstrated that matrix metalloproteases MMP-2 and MMP-9 could be visualized in biopsy prints and that the gelatinolytic activity was positively correlated with immunohistochemistry analysis of the same markers in matched bioptic specimens. Moreover, we compared the ability to detect the PCa-associated hypermethylation of GSTP1 promoter in DNA extracted from biopsy prints with those of the corresponding core needle biopsies. Biopsy prints demonstrated the same specificity of biopsies in detecting PCa (50%) while the sensitivity and the positive predictive value were lower than biopsies (56% vs 78% and 63% vs 70%, respectively).</p> <p>Conclusions</p> <p>Biopsy print, combining a molecular point of view to the routinely hystopathological analysis of prostate biopsies, should be a useful tool to improve the diagnosis of PCa.</p
Phase I dose escalation and pharmacokinetic study of pluronic polymer-bound doxorubicin (SP1049C) in patients with advanced cancer
SP1049C is a novel anticancer agent containing doxorubicin and two nonionic pluronic block copolymers. In preclinical studies, SP1049C demonstrated increased efficacy compared to doxorubicin. The objectives of this first phase I study were to determine the toxicity profile, dose-limiting toxicity, maximum tolerated dose and pharmacokinetic profile of SP1049C, and to document any antitumour activity. The starting dose was 5 mg m−2 (doxorubicin content) as an intravenous infusion once every 3 weeks for up to six cycles. A total of 26 patients received 78 courses at seven dose levels. The dose-limiting toxicity was myelosuppression and DLT was reached at 90 mg m−2. The maximum tolerated dose was 70 mg m−2 and is recommended for future trials. The pharmacokinetic profile of SP1049C showed a slower clearance than has been reported for conventional doxorubicin. Evidence of antitumour activity was seen in some patients with advanced resistant solid tumours. Phase II trials with this agent are now warranted to further define its antitumour activity and safety profile
A phase I dose-escalating study of DaunoXome, liposomal daunorubicin, in metastatic breast cancer
The aims of this phase I study were to establish the maximum tolerated dose, safety profile and activity of liposomal daunorubicin, DaunoXome (NeXstar Pharmaceuticals), in the treatment of metastatic breast cancer. DaunoXome was administered intravenously over 2 h in 21 day cycles and doses were increased from 80 to 100, 120 and 150 mg m2. Sixteen patients were enrolled. A total of 70 cycles of DaunoXome were administered. The maximum tolerated dose was 120 mg m2, the dose-limiting toxicity being prolonged grade 4 neutropenia or neutropenic pyrexia necessitating dose reductions at 120 and 150 mg m2. Asymptomatic cardiotoxicity was observed in three patients: grade 1 in one treated with a cumulative dose of 800 mg m2 and grade 2 in two, one who received a cumulative dose of 960 mg m2 and the other a cumulative dose of 600 mg m2 with a previous neoadjuvant doxorubicin chemotherapy of 300 mg m2. Tumour response was evaluable in 15 patients, of whom two had objective responses, six had stable disease and seven had progressive disease. In conclusion, DaunoXome is associated with mild, manageable toxicities and has anti-tumour activity in metastatic breast cancer. The findings support further phase II evaluation of DaunoXome alone and in combination with other standard non-anthracycline cytotoxic or novel targeted agents. Although the dose-limiting toxicity for DaunoXome was febrile neutropenia at 120 mg m2, we would recommend this dose for further evaluation, as the febrile neutropenia occurred after four or more cycles in three of the four episodes seen, was short lived and uncomplicated
Population pharmacokinetics in phase I drug development: a phase I study of PK1 in patients with solid tumours
Doxorubicin pharmacokinetics were determined in 33 patients with solid tumours who received intravenous doses of 20–320 mg m−2 HPMA copolymer bound doxorubicin (PK1) in a phase I study. Since assay constraints limited the data at lower doses, conventional analysis was not feasible and a ‘population approach’ was used. Bound concentrations were best described by a biexponential model and further analyses revealed a small influence of dose or weight on V1 but no identifiable effects of age, body surface area, renal or hepatic function. The final model was: clearance (Q) 0.194 l h−1; central compartment volume (V1) 4.48 × (1+0.00074 × dose (mg)) l; peripheral compartment volume (V2) 7.94 l; intercompartmental clearance 0.685 l h−1. Distribution and elimination half-lives had median estimates of 2.7 h and 49 h respectively. Free doxorubicin was present at most sampling times with concentrations around 1000 times lower than bound doxorubicin values. Data were best described using a biexponential model and the following parameters were estimated: apparent clearance 180 l h−1; apparent V1 (l) 1450 × (1+0.0013 × dose (mg)), apparent V2 (l) 21 300 × (1–0.0013 × dose (mg)) × (1+2.95 × height (m)) and apparent Q 6950 l h−1. Distribution and elimination half-lives were 0.13 h and 85 h respectively. © 1999 Cancer Research Campaig
- …