20 research outputs found

    Topography-Mediated Enhancement of Nonviral Gene Delivery in Stem Cells

    Get PDF
    Gene delivery holds great promise for bioengineering, biomedical applications, biosensors, diagnoses, and gene therapy. In particular, the influence of topography on gene delivery is considered to be an attractive approach due to low toxicity and localized delivery properties. Even though many gene vectors and transfection systems have been developed to enhance transfection potential and combining it with other forms of stimulations could even further enhance it. Topography is an interesting surface property that has been shown to stimulate differentiation, migration, cell morphology, and cell mechanics. Therefore, it is envisioned that topography might also be able to stimulate transfection. In this study, we tested the hypothesis "topography is able to regulate transfection efficiency", for which we used nano- and microwave-like topographical substrates with wavelengths ranging from 500 nm to 25 µm and assessed the transfectability of human bone marrow-derived mesenchymal stem cells (hBM-MSCs) and myoblasts. For transfection, Lipofectamine 2000 and a gene encoding plasmid for red-fluorescent protein (m-Cherry) were used and topography-induced cell morphology and transfection efficiency was analyzed. As a result, topography directs cell spreading, elongation, and proliferation as well as the transfection efficiency, which were investigated but were found not to be correlated and dependent on the cell type. A 55% percent improvement of transfection efficiency was identified for hBM-MSCs grown on 2 µm wrinkles (24.3%) as compared to hBM-MSCs cultured on flat controls (15.7%). For myoblast cells, the highest gene-expression efficiency (46.1%) was observed on the 10 µm topography, which enhanced the transfection efficiency by 64% as compared to the flat control (28.1%). From a qualitative assessment, it was observed that the uptake capacity of cationic complexes of TAMRA-labeled oligodeoxynucleotides (ODNs) was not topography-dependent but that the intracellular release was faster, as indicated by the positively stained nuclei on 2 μm for hBM-MSCs and 10 μm for myoblasts. The presented results indicate that topography enhances the gene-delivery capacity and that the responses are dependent on cell type. This study demonstrates the important role of topography on cell stimulation for gene delivery as well as understanding the uptake capacity of lipoplexes and may be useful for developing advanced nonviral gene delivery strategies

    Correlating Corona Composition and Cell Uptake to Identify Proteins Affecting Nanoparticle Entry into Endothelial Cells

    Get PDF
    [Image: see text] The formation of the biomolecule corona on the surface of nanoparticles upon exposure to biological fluids critically influences nanocarrier performance in drug delivery. It has been shown that in some cases corona proteins can mediate specific nanoparticle interactions with cell receptors. Within this context, in order to identify corona proteins affecting nanoparticle uptake, in this work, correlation analysis is performed between the corona composition of a panel of silica nanoparticles of different sizes and surface functionalities and their uptake in four endothelial cell types derived from different organs. In this way, proteins that correlate with increased or decreased uptake were identified, and their effects were validated by studying the uptake of nanoparticles coated with a single protein corona and competition studies in brain and liver endothelium. The results showed that precoating nanoparticles with histidine-rich glycoprotein (HRG) alone strongly decreased uptake in both liver and brain endothelium. Furthermore, our results suggested the involvement of the transferrin receptor in nanoparticle uptake in liver endothelium and redirection of the nanoparticles to other receptors with higher uptake efficiency when the transferrin receptor was blocked by free transferrin. These data suggested that changes in the cell microenvironment can also affect nanoparticle uptake and may lead to a different interaction site with nanoparticles, affecting their uptake efficiency. Overall, correlating the composition of the protein corona and nanoparticle uptake by cells allows for the identification of corona molecules that can be used to increase as well as to reduce nanoparticle uptake by cells

    Topography-Mediated Fibroblast Cell Migration Is Influenced by Direction, Wavelength, and Amplitude

    Get PDF
    Biophysical stimuli including topography play a crucial role in the regulation of cell morphology, adhesion, migration, and cytoskeleton organization and have been known to be important in biomaterials design for tissue engineering. However, little is known about the individual effects of topographic direction, structure repetition, and feature size of the substrate on which wound healing occurs. We report on the design of a topographical gradient with wavelike features that gradually change in wavelength and amplitude, which provides an efficient platform for an in vitro wound healing assay to investigate fibroblast migration. The wound coverage rate was measured on selected areas with wavelength sizes of 2, 5, and 8 mu m in perpendicular and parallel orientations. Furthermore, a method was developed to produce independently controlled wavelength and amplitude and study which parameter has greater influence. Cell movement was guided by topographical properties, with a lower wrinkle wavelength (2 mu m) eliciting the fastest migration speed, and the migration speed increased with decreasing amplitude. However, when the amplitudes were matched, cells migrated faster on a larger wavelength. This study also highlights the sensitivity of fibroblasts to the topographic orientation, with cells moving faster in the parallel direction of the topography. The overall behavior indicated that the wavelength and amplitude both play an important role in directing cell migration. The collective cell migration was found not to be influenced by altered cell proliferation. These findings provide key insights into topography-triggered cell migration and indicate the necessity for better understanding of material-directed wound healing for designing bio-inductive biomaterials

    Nanogels with Selective Intracellular Reactivity for Intracellular Tracking and Delivery

    Get PDF
    A multimodal approach for hydrogel-based nanoparticles was developed to selectively allow molecular conjugated species to either be released inside the cell or remain connected to the polymer network. Using the intrinsic difference in reactivity between esters and amides, nanogels with an amide-conjugated dye could be tracked intracellularly localizing next to the nucleus, while ester-conjugation allowed for liberation of the molecular species from the hydrogel network inside the cell, enabling delivery throughout the cytoplasm. The release was a result of particle exposure to the intracellular environment. The conjugation approach and polymer network building rely on the same chemistry and provide a diverse range of possibilities to be used in nanomedicine and theranostic approaches

    Similar ex vivo expansion and post-irradiation regenerative potential of juvenile and aged salivary gland stem cells

    Get PDF
    AbstractBackground and purposeSalivary gland dysfunction is a major side effect of radiotherapy for head and neck cancer patients, which in the future might be salvaged by autologous adult salivary gland stem cell (SGSC) therapy. Since frail elderly patients may have decreased activity of SGSCs, we aimed to characterize the potential of aged SGSC-population in a murine model.Materials and methodsSalivary glands and salisphere-derived cells from young and old mice were tested for CD24 and CD29 stem cell marker expression using FACS. Moreover, in vitro expansion capability and in vivo regeneration potential upon post-irradiation transplantation of young and aged SGSCs were measured.ResultsAn increase in CD24hi/CD29hi putative stem cells was detected in aged salivary glands albeit with a decrease in functional ability to form salispheres. However, the salispheres formed from aged mice salivary glands expressed CD24hi/CD29hi to the same extent as the ones from young mice. Moreover, following exposure to adequate growth conditions old and young SGSCs exhibited similar in vitro expansion- and in vivo regeneration potential.ConclusionsAged SGSCs although reduced in number are in vitro indistinguishable from young SGSCs and could potentially be used to ameliorate age- or treatment related salivary gland dysfunction

    DNAJB6b-enriched small extracellular vesicles decrease polyglutamine aggregation in in vitro and in vivo models of Huntington disease

    Get PDF
    Huntington disease (HD) is a devastating neurodegenerative disorder characterized by aggregation of huntingtin (HTT) protein containing expanded polyglutamine (polyQ) tracts. DNAJB6, a member of the DNAJ chaperone family, was reported to efficiently inhibit polyQ aggregation in vitro, in cell models, and in vivo in flies, xenopus, and mice. For the delivery of exogenous DNAJB6 to the brain, the DNAJB6 needs to be protected against (enzymatic) degradation and show good penetration into brain tissue. Here, we tested the potential of small extracellular vesicles (sEVs) derived from neural stem cells (NSCs) for delivery of DNAJB6 as anti-amyloidogenic cargo. Administration of sEVs isolated from DNAJB6-overexpressing cells to cells expressing expanded polyQ tracts suppressed HTT aggregation. Furthermore, intrathecal injection of DNAJB6-enriched sEVs into R6/2 transgenic HD mice significantly reduced mutant HTT aggregation in the brain. Taken together, our data suggest that sEV-mediated molecular chaperone delivery may hold potential to delay disease onset in HD

    Biomimetic Multiscale Hierarchical Topography Enhances Osteogenic Differentiation of Human Mesenchymal Stem Cells

    Get PDF
    The interface between materials and cells plays a critical role in many biomedical applications. Inspired by the hierarchical architecture of collagen, most abundant structure in the extracellular matrix (ECM), a multiscale hierarchical topography is designed to mimic the collagen nano/micro hierarchical topography. It is hypothesized that the ECM topography affects osteogenesis of human mesenchymal stem cells but until now, it cannot be studied without the biochemical and mechanical influences of the ECM. The multiscale hierarchical topography is achieved by innovatively using sequentially aligned topography preparation via a silicone stretch-oxidation-release method and imprinting lithography. The anisotropically hierarchical topography influences stem cell morphology, orientation, and osteogenic differentiation. Intriguingly, the design resembling that of assembled collagen, exhibits the highest degree of osteogenesis. The hierarchical topotaxis effects are further exemplified by the enhanced vinculin expression, cell contractility, and more pronounced nuclear translocation of Yes-associated protein with the collagen-mimicking topography, indicative for enhanced osteogenesis. The developed multiscale hierarchical system provides insights into the importance of specific biological ECM-like topography by decoupling the biochemical influence. Various diseases, cancer, osteoarthritis, and fibrosis display impaired ECM structures, and therefore this system may have a great potential for tissue engineering approaches and developing in vitro disease models

    Role of quiescent cells in the homeostatic maintenance of the adult submandibular salivary gland

    Get PDF
    Stem/progenitor cells are required for maintenance of salivary gland (SG) function and serve as untapped reservoirs to create functional cells. Despite recent advancements in the identification of stem/progenitor pools, in the submandibular gland (SMG), a knowledge gap remains. Furthermore, the contribution to adult SMG homeostasis of stem/progenitor cells originating from embryonic development is unclear. Here, we employ an H2B-GFP embryonic and adult pulse-and-chase system to characterize potential SMG stem/progenitor cells (SGSCs) based on quiescence at different stages. Phenotypical profiling of quiescent cells in the SMG revealed that label-retaining cells (LRCs) of embryonic or adult origin co-localized with CK8+ ductal or vimentin+ mesenchymal, but not with CK5+ or CK14+ stem/progenitor cells. These SMG LRCs failed to self-renew in vitro while non-label retaining cells displayed differentiation and long-term expansion potential as organoids. Collectively, our data suggest that an active cycling population of cells is responsible for SMG homeostasis with organoid forming potential

    Topography induced stiffness alteration of stem cells influences osteogenic differentiation

    Get PDF
    Topography-driven alterations in cell morphology tremendously influence cell biological processes, particularly stem cell differentiation. Aligned topography is known to alter the cell shape, which we anticipated to also induce altered physical properties of the cell. Here, we show that topography has a significant influence on single cell stiffness of human bone marrow derived-Mesenchymal Stem Cells (hBM-MSCs) and the osteogenic differentiation of these. Aligned topographies were used to control the cell elongation, depicted as the cell aspect ratio (C-AR). Intriguingly, an equal C-AR elicited from different topographies, resulted in highly altered differentiation behavior and the underlying single cell mechanics was found to be critical. The cell behavior was found to be focal adhesion-mediated and induced stiffness alterations rather than just influencing the cell elongation. The effect was further corroborated by investigations of the transcriptional regulators YAP. Our study provides insight into how mechanical properties of the cell, which are stimulated by topography, modulate the osteogenesis of hBM-MSCs, which is beneficial for improving the understanding of interactions between stem cells and topography for developing applications of tissue engineering and regenerative medicine
    corecore