1,724 research outputs found

    Notes on Texas robber flies with the description of a new species of Proctacanthella (Asilidae: Diptera)

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/56743/1/OP304.pd

    The existence of a 2Po excited state for the e+Ca system

    Get PDF
    The Configuration Interaction method is used to demonstrate that there is an electronically stable state of positronic calcium with an orbital angular momentum of L=1. This prediction relies on the use of an asymptotic series to estimate the variational limit of the energy. The best estimate of the binding energy is 37 meV. A discussion of the structure of the system is also presented.Comment: 4 pages, 2 figures, in press PR

    The Size Distribution of Kuiper Belt Objects

    Full text link
    We describe analytical and numerical collisional evolution calculations for the size distribution of icy bodies in the Kuiper Belt. For a wide range of bulk properties, initial masses, and orbital parameters, our results yield power-law cumulative size distributions, N_C propto r^{-q}, with q_L = 3.5 for large bodies with radii of 10-100 km, and q_s = 2.5-3 for small bodies with radii lesss than 0.1-1 km. The transition between the two power laws occurs at a break radius of 1-30 km. The break radius is more sensitive to the initial mass in the Kuiper Belt and the amount of stirring by Neptune than the bulk properties of individual Kuiper Belt objects (KBOs). Comparisons with observations indicate that most models can explain the observed sky surface density of KBOs for red magnitudes, R = 22-27. For R 28, the model surface density is sensitive to the amount of stirring by Neptune, suggesting that the size distribution of icy planets in the outer solar system provides independent constraints on the formation of Neptune.Comment: 24 pages of text, 12 figures; to appear in the Astronomical Journal, October 200

    The periodic standing-wave approximation: post-Minkowski computation

    Full text link
    The periodic standing wave method studies circular orbits of compact objects coupled to helically symmetric standing wave gravitational fields. From this solution an approximation is extracted for the strong field, slowly inspiralling motion of black holes and binary stars. Previous work on this model has dealt with nonlinear scalar models, and with linearized general relativity. Here we present the results of the method for the post-Minkowski (PM) approximation to general relativity, the first step beyond linearized gravity. We compute the PM approximation in two ways: first, via the standard approach of computing linearized gravitational fields and constructing from them quadratic driving sources for second-order fields, and second, by solving the second-order equations as an ``exact'' nonlinear system. The results of these computations have two distinct applications: (i) The computational infrastructure for the ``exact'' PM solution will be directly applicable to full general relativity. (ii) The results will allow us to begin supplying initial data to collaborators running general relativistic evolution codes.Comment: 19 pages, 3 figures, 1 table, RevTe

    Kinematics of the swimming of Spiroplasma

    Full text link
    \emph{Spiroplasma} swimming is studied with a simple model based on resistive-force theory. Specifically, we consider a bacterium shaped in the form of a helix that propagates traveling-wave distortions which flip the handedness of the helical cell body. We treat cell length, pitch angle, kink velocity, and distance between kinks as parameters and calculate the swimming velocity that arises due to the distortions. We find that, for a fixed pitch angle, scaling collapses the swimming velocity (and the swimming efficiency) to a universal curve that depends only on the ratio of the distance between kinks to the cell length. Simultaneously optimizing the swimming efficiency with respect to inter-kink length and pitch angle, we find that the optimal pitch angle is 35.5∘^\circ and the optimal inter-kink length ratio is 0.338, values in good agreement with experimental observations.Comment: 4 pages, 5 figure

    Collisional Cascades in Planetesimal Disks II. Embedded Planets

    Full text link
    We use a multiannulus planetesimal accretion code to investigate the growth of icy planets in the outer regions of a planetesimal disk. In a quiescent minimum mass solar nebula, icy planets grow to sizes of 1000--3000 km on a timescale t = 15-20 Myr (a/30 AU)^3 where a is the distance from the central star. Planets form faster in more massive nebulae. Newly-formed planets stir up leftover planetesimals along their orbits and produce a collisional cascade where icy planetesimals are slowly ground to dust. The dusty debris of planet formation has physical characteristics similar to those observed in beta Pic, HR 4796A, and other debris disks. We derive dust masses for small particles, 1 mm and smaller, and large particles, 1 mm and larger, as a function of the initial conditions in the planetesimal disk. The dust luminosities derived from these masses are similar to those observed in Vega, HR 4796A, and other debris disks. The calculations produce bright rings and dark gaps. Bright rings occur where 1000 km and larger planets have recently formed. Dark gaps are regions where planets have cleared out dust or shadows where planets have yet to form.Comment: to be published in the Astronomical Journal, January 2004; 7 pages of text; 17 figures at http://cfa-www.harvard.edu/~kenyon/pf/emb-planet-figures.pdf; 2 animations at http://cfa-www.harvard.edu/~kenyon/pf/emb-planet-movies.htm

    Dispersion coefficients of the excited states of lithium atoms

    Get PDF
    The dispersion coefficients of a number of the low-lying states of Li are determined for the homonuclear case. The Li wave functions and energies were computed in a frozen core Hamiltonian with a semiempirical polarization potential. Besides computing the dispersion coefficients, the scalar and tensor polarizabilities and oscillator strengths are computed and generally seen to be in good agreement with other accurate calculations
    • …
    corecore