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The configuration interaction method is used to demonstrate that there is an electronically stable state of
positronic calcium with an orbital angular momentum of L � 1. This prediction relies on the use of an
asymptotic series to estimate the variational limit of the energy. The best estimate of the binding energy is
37 meV. A discussion of the structure of the system is also presented.
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In 1997 the existence of positron-atom bound states was
demonstrated by two independent calculations [1,2] of the
e�Li ground state. Subsequently, it has been shown that at
least nine other atoms can attach a positron and form an
electronically stable bound state [3]. Besides its intrinsic
interest, the knowledge that positrons can form bound
states has been crucial to recent developments in under-
standing the very large annihilation rates that occur when
positrons annihilate with various molecules in the gas
phase [4–7]. The problem of explaining the large annihi-
lation rates had remained essentially unresolved almost
since the first experiments [8–10]. While the possible
influence of bound states upon the annihilation rate had
been conjectured [11,12], the lack of hard evidence for the
existence of positron-atom bound states had certainly in-
hibited development of compound state models of
positron-molecule annihilation [12–15]. The prevailing
view on positron binding [16] has changed to such an
extent over the last decade that a positron-atom (or
positron-molecule) interaction potential that supports a
positron bound state can now be regarded as mundane [17].

One feature of the atomic calculations is that binding has
only been seen for spherically symmetric states. The an-
gular momentum of the parent atom ground state and the
positron-atom composite state are always zero [3]. Another
feature is that binding occurs to atoms with an ionization
energy close to 6.80 eV (the Ps binding energy) and the
binding energies are largest for atoms with their ionization
energies closest to 6.80 eV [3].

While the existence of positron binding to atoms (and
molecules) is now accepted, the question of whether these
complexes have excited states is largely unexplored.
Whether such states exist is best determined by calcula-
tions that are sufficiently sophisticated to accurately model
the delicate interplay of attractive and repulsive Coulomb
interactions with the additional complication of an angular
momentum barrier. (We note the prediction of a 2Po state of
e�Mg by Gribakin et al. [18]. However, the many body
theory of Gribakin et al. is known to grossly overestimate

the strength of the positron-atom interaction [3,19–21] and
so the result has never been taken seriously). First, it is
necessary to identify what is meant by an excited state. The
states of interest should have the same long-range disso-
ciation channel as the lower-lying positronic atom ground
state. This is to distinguish these systems from states which
are better described as a positron bound to an excited state
of the atom (an example is the metastable e�He�3Se� state
[22]).

The present Letter describes some very large configura-
tion interaction (CI) calculations of the e�Ca system that
indicate the presence of a 2Po state with a binding energy of
� 37 meV with respect to the lowest energy Ca��4s� �
Ps�1s� dissociation channel (the ionization energy of the
Ca atom is less than 6.80 eV). This system is the first
representative of a new class of positron-atom bound states
whose existence is more surprising than that of the Ca�2Po

negative ion [23,24].
The CI method as applied to positron-atom systems with

two valence electrons and a positron has been discussed
previously [20,25,26], but a short description is worth-
while. The model Hamiltonian is initially based on a
Hartree-Fock (HF) wave function for the neutral atom
ground state. One- and two-body semiempirical polariza-
tion potentials are added to the potential field of the HF
frozen core and the parameters of the core-polarization
potentials defined by reference to the spectrum of Ca�

[20]. The effective Hamiltonian for the system with 2 va-
lence electrons and a positron was
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The direct potential (Vdir) represents the interaction with
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the HF 1s22s22p63s23p6 electron core. The direct part of
the core potential is attractive for electrons and repulsive
for the positron. The exchange potential (Vexc) between the
valence electrons and the HF core was computed without
approximation.

The one-body polarization potential (Vp1) was a semi-
empirical polarization potential with the functional form

 Vp1�r� � �
X

lm

�dg2
l �r�

2r4 jlmihlmj: (2)

The factor �d is the static dipole polarizability of the core
and g2

l �r� � 1� exp��r6=�6
l � is a cutoff function de-

signed to make the polarization potential finite at the
origin. The core dipole polarizability was set to 3.16 a3

0
while the �l were adjusted to reproduce the Ca� spec-
trum [20] (the Ca� energy is �0:436 286 53 Hartree
in the model potential while experiment gives
�0:436 278 Hartree [27]). The same cutoff function has
been adopted for both the positron and electrons. The two-
body polarization potential (Vp2) is defined as

 Vp2�ri; rj� �
�d
r3
i r

3
j

�ri 	 rj�gp2�ri�gp2�rj�; (3)

where gp2�r� is chosen to have a cutoff parameter obtained
by averaging the �l. This model has been used to describe
the calcium spectrum to quite high accuracy [20,28].

The CI basis was constructed by letting the two electrons
and the positron form all the possible total angular mo-
mentum LT � 1 configurations, with the two electrons in a
spin-singlet state, subject to the selection rules,

 max�l0; l1; l2� 
 J; (4)

 min�l1; l2� 
 Lint; (5)

 ��1��l0�l1�l2� � �1: (6)

In these rules l0, l1, and l2 are, respectively, the orbital
angular momenta of the positron and the two electrons. We
define hEiJ to be the energy of the calculation with a
maximum orbital angular momentum of J.

The two-electron-positron calculations with nonzero to-
tal angular momentum were first validated against the
previous LT � 1 PsH calculations of Tachikawa [29].
Using their Gaussian-type orbitals we reproduced their
reported energy and annihilation rates (note that the PsH
states with LT > 0 are unbound).

The Hamiltonian for the e�Ca 2P0 state was diagonal-
ized in a CI basis constructed from a very large number of
single particle orbitals, including orbitals up to l � 14.
There was a minimum of 14 radial basis functions for
each l. The largest calculation was performed with J �
14 and Lint � 3 and gave a CI basis dimension of 874 888.
The parameter Lint does not have to be particularly large
since it is mainly concerned with electron-electron corre-

lations [20]. The resulting Hamiltonian matrix was diago-
nalized with the Davidson algorithm [30], and a total of
4000 iterations were required for the largest calculation.

The energy of the e�Ca 2Po state as a function of J is
given in Table I. The binding energy is defined as " �
��0:686 286 53� E�. None of the calculations give an
energy lower than the Ca��4s� � Ps�1s� threshold. The
main technical problem afflicting CI calculations of
positron-atom interactions is the slow convergence of the
energy with J [3,26,31,32] and the present calculation is no
exception to the rule. One way to determine the J ! 1
energy, hEi1, is to make use of an asymptotic analysis. It
has been shown that successive increments, �EJ � hEiJ �
hEiJ�1, to the energy can written as an inverse power series
[26,33–36], viz.

 �EJ �
AE

�J� 1
2�

4
�

BE
�J� 1

2�
5
�

CE
�J� 1

2�
6
� . . . : (7)

The J ! 1 limit, has been determined by fitting sets of
hEiJ values to asymptotic series with either 1, 2, or 3 terms.
The coefficients, AE, BE, and CE for the three-term expan-
sion are determined at a particular J from 4 successive
energies (hEiJ�3, hEiJ�2, hEiJ�1, and hEiJ). Once the co-
efficients have been determined it is easy to sum the series
to 1 and obtain the variational limit. Application of
asymptotic series analysis to helium has resulted in CI
calculations reproducing the ground state energy to an

TABLE I. Results of CI calculations for the e�Ca 2Po state as
a function of J, and for Lint � 3. The total number of configu-
rations is denoted by NCI. The three-body energy of the state,
relative to the energy of the Ca2� core, is given in Hartree. The
threshold for binding is �0:686 286 53 Hartree, and " gives the
binding energy (in Hartree) against dissociation into Ps�
Ca��4s�. The values of hEi1 were determined at J � 14.

J NCI hEiJ "J

1 10 094 �0:643 193 80 �0:043 092 73
2 34 244 �0:649 760 77 �0:036 525 76
3 79 198 �0:655 192 52 �0:031 094 01
4 140 168 �0:661 046 45 �0:025 240 09
5 206 822 �0:666 265 28 �0:020 021 26
6 278 754 �0:670 460 20 �0:015 826 33
7 352 156 �0:673 728 23 �0:012 558 30
8 426 832 �0:676 266 13 �0:010 020 41
9 501 508 �0:678 249 46 �0:008 037 07

10 576 184 �0:679 815 18 �0:006 471 35
11 650 860 �0:681 064 44 �0:005 222 09
12 725 536 �0:682 071 34 �0:004 215 20
13 800 212 �0:682 890 35 �0:003 396 18
14 874 888 �0:683 561 85 �0:002 724 68

hEi1 "1
one-term Eq. (7) �0:686 487 06 0.000 200 5
two-term Eq. (7) �0:687 397 84 0.001 111 3
three-term Eq. (7) �0:687 638 26 0.001 351 7
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accuracy of �10�8 Hartree [36,37]. Figure 1 shows the
estimates of hEi1 as a function of J.

The different extrapolations all give energies below the
dissociation threshold and indicate that the e�Ca 2Po state
is electronically stable. The energy of the three-term ex-
trapolation does seem to have stabilized at a binding en-
ergy of �0:001 35 Hartree (37 meV). The two-term
binding energy is slightly smaller but does seem to be
approaching the three-term estimate. The one-term esti-
mate of hEi1 is also bound, although its binding energy is
smaller. The precise estimates of hEi1 evaluated at J � 14
are given in Table I.

Since the binding energy is small it is desirable to
examine the areas of uncertainty in the model and compu-
tation to determine whether they could invalidate the
prediction.

The interaction between the core and valence electrons
was tested quite simply by adjusting the core polarizabil-
ity by �5% (leading to a change of �0:16% in the neutral
Ca ionization energy). When this was done, the overall
change in the e�Ca 2Po binding energy at J � 14 was
�0:000 13 Hartree, i.e.,�10% of the final binding energy.

Choosing the polarization potential cutoff function for
the positron to be the same as the electron will lead to the
binding energy being underestimated. First, it is known
from calculations on the rare gases that the positron polar-
ization potential is more attractive than the equivalent
electron potential [38–40]. Also, the ab initio calculations
on the small systems, e�He�3Se� and e�Li have given
larger binding energies (by 1%–2%) than calculations
using model potentials to represent the core [41,42].

The lack of completeness in the finite dimension radial
basis is also not an issue. Computational investigations
have revealed that accurate prediction of the �EJ energy
increments requires a larger basis as J increases [26,36].
This results in the typical CI partial wave expansion with a
fixed dimension radial basis for the different l values
having an inherent tendency to underestimate the binding
energy [26,36].

Finally, a computational null experiment was performed
on the PsH system. This system does not have a 2Po bound
state. A calculation of almost identical size to the e�Ca
system was performed. An unbound system would be
expected to have an hEi1 that asymptotes to the threshold
energy, or to a value above threshold, and this is what is
seen to occur in Fig. 2.

A e�Ca valence annihilation rate of � � 1:42�
109 sec�1 has also been determined using an asymptotic
analysis similar to that used for the energy [21,26]. This
large annihilation rate suggests that a large fraction of the
wave function consists of a Ca� � Ps�1s� cluster [3].

The system is compact despite its small binding energy
and the mean positron radius for a converged calculation
was estimated at hrpi � 8:7 a0. The e�Ca ground state
with a binding energy 14 times larger has almost the same
hrpi [21]. However, the large r form of the 2Po wave
function must have a Ca��4s� � Ps�1s� structure with the
Ps�1s� center of mass being in an L � 1 state with respect
to the residual ion. The centrifugal barrier associated with
the nonzero angular momentum acts to confine the positron
probability distribution.

The present calculations indicate that positronic calcium
has a 2Po excited state. The existence of both 2Se and 2Po

states of e�Ca makes optical detection a possibility. While
the present calculation does not present an absolute varia-
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FIG. 2. The binding energy, " � ��0:75� E�, of the PsH 2Po

system as a function of J. The directly calculated energy is
shown as the solid line while the hEi1 limits using Eq. (7) are
shown as the dashed lines.
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FIG. 1. The binding energy (in units of Hartree) of the 2Po

state of e�Ca as a function of J. The directly calculated energy is
shown as the solid line while the J ! 1 limits using Eq. (7) with
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tional proof of binding (the calculation would have to be
extended to J � 20 for this to occur), the evidence in
support of the excited state is strong. It is worth noting
that extrapolating finite dimension basis sets to the varia-
tional limit is quite common in the field of quantum
chemistry [43].

One consequence of this result lies in the area of posi-
tron annihilation. It has been shown that a low energy
p-wave shape resonance can lead to very large values of
Zeff [44]. It is possible for thermally averaged values of Zeff

to exceed 104 since the energy dependence of Zeff for a
p-wave shape resonance is reasonably compatible with a
Maxwell-Boltzmann energy distribution. The existence of
p-wave shape resonances are certainly plausible given the
existence of the 2Po bound state and provides another
reaction that can contribute to the very large annihilation
rates seen in gas-phase experiments [4,8–10]. And very
recently, Zeff peaks in the annihilation spectra for dodecane
(C12H26) and tetradecane (C14H30) have been tentatively
identified as a positronically excited bound state associated
with the C-H stretch mode [45,46].
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