29 research outputs found
SNP assay to detect the ‘Hyuuga’ red-brown lesion resistance gene for Asian soybean rust
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi Syd., has the potential to become a serious threat to soybean, Glycine max L. Merr., production in the USA. A novel rust resistance gene, Rpp?(Hyuuga), from the Japanese soybean cultivar Hyuuga has been identified and mapped to soybean chromosome 6 (Gm06). Our objectives were to fine-map the Rpp?(Hyuuga) gene and develop a high-throughput single nucleotide polymorphism (SNP) assay to detect this ASR resistance gene. The integration of recombination events from two different soybean populations and the ASR reaction data indicates that the Rpp?(Hyuuga) locus is located in a region of approximately 371 kb between STS70887 and STS70923 on chromosome Gm06. A set of 32 ancestral genotypes which is predicted to contain 95% of the alleles present in current elite North American breeding populations and the sources of the previously reported ASR resistance genes (Rpp1, Rpp2, Rpp3, Rpp4, Rpp5, and rpp5) were genotyped with five SNP markers. We developed a SimpleProbe assay based on melting curve analysis for SNP06-44058 which is tighly linked to the Rpp?(Hyuuga) gene. This SNP assay can differentiate plants/lines that are homozygous/homogeneous or heterozygous/heterogeneous for the resistant and susceptible alleles at the Rpp?(Hyuuga) locus
High and low pre-inoculation temperatures decrease the effectiveness of the Lr20 and Sr15 rust resistance genes in wheat
Spring wheat seedlings containing Lr 20 and Sr 15 resistance alleles were raised at 30° C, prior to inoculation with leaf rust (Puccinia recondita race 76–2,3) and stem rust (Puccinia graminis f.sp, tritici race 343–1,2,3,5,6) pathogens, respectively. Infected plants were then grown at one of seven temperatures in the range 18–30 C and infection types were scored at 10 days post-inoculation. These results were compared with those obtained for plants raised at a pre-inoculation temperature of 18° C. In both 18° C and 30° C pre-grown plants, a progressive increase in infection type was observed on resistant lines as post-inoculation temperature increased. However, resistant lines raised at 30°C had significantly higher infection types than plants raised at 18° C at all post-inoculation temperatures for which some degree of resistance was still evident in the plants raised at 18°C, The maximum temperature for expression of resistance was significantly higher for Lr 20 than for Sr 15. irrespective of pre-inoculation temperature. A lowering of the resistance expression was also evident in Sr 15-bearing lines raised at a very low pre-inoculation temperature (4°C). The effects of low pre-inoculation temperature on resistance were assessed in both winter and spring wheat lines. These results are discussed in the light of current ideas concerning the host membrane location of pathogen recognition events